• Title/Summary/Keyword: co-channel interference coverage

Search Result 13, Processing Time 0.009 seconds

Analysis on Co-channel Interference Coverage of ATSC DTV (ATSC DTV에서 동일채널간섭 커버리지에 대한 분석)

  • Ryu, Kwanwoong;Park, Sung Ik;Kim, Heung Mook
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • Recently, the digital television transition from analog television to digital television has been progressing in terrestrial broadcasting. As a result of the DTV transition, additional reassignments and deployments of TV White spaces (TVWS) caused by co-channel interference (CCI) were needed. In this paper, we investigate the TVWS caused by CCI using Longley-Rice and ITU-R P.1546 propagation model, which are the most widely-used propagation model. In addition, we analyze the service coverage radius and CCI radius according to the height of transmitter antenna and transmitting power. The results show that the ratios of CCI radius to service coverage radius in Longley-Rice and ITU-R P.1546 propagation model are about 2.54 and 2.07, respectively.

Cooperative Interference Mitigation Using Fractional Frequency Reuse and Intercell Spatial Demultiplexing

  • Chang, Jae-Won;Heo, Jun;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • For mobile wireless systems with full frequency reuse, co-channel interference near the cell coverage boundaries has a significant impact on the signal reception performance. This paper addresses an approach to efficiently mitigate the effect of downlink co-channel interference when multi-antenna terminals are used in cellular environments, by proposing a signal detection strategy combined with a system-level coordination for dynamic frequency reuse. We demonstrate the utilization of multi-antennas to perform spatial demultiplexing of both the desired signal and interfering signals from adjacent cells results in significant improvement of spectral efficiency compared to the maximal ratio combining (MRC) performance, especially when an appropriate frequency reuse based on the traffic loading condition is coordinated among cells. Both analytic expressions for the capacity and experimental results using the adaptive modulation and coding (AMC) are used to confirm the performance gain. The robustness of the proposed scheme against varying operational conditions such as the channel estimation error and shadowing effects are also verified by simulation results.

A Study on the Efficient Interference Cancellation for Multi-hop Relay Systems (다중 홉 중계 시스템에서 효과적인 간섭 제거에 관한 연구)

  • Kim, Eun-Cheol;Cha, Jae-Sang;Kim, Seong-Kweon;Lee, Jong-Joo;Kim, Jin-Young;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2009
  • The transmitted signal from a source is transmitted to a destination through wireless channels. But if the mobile destination is out of the coverage of the source or exists in the shady side of the coverage, the destination can not receiver the signal from the source and they can not maintain communication. In order to overcome these problems, we adopt relays. A system employing relays is a multi-hop relay system. In the multi-hop relay system, coverages of each relay that is used for different systems can overlap each other in some place. When there is a destination in this place, interference occurs at the destination. In this paper, we study on the efficient co-channel interference (CCI) cancellation algorithm. In the proposed strategy, CCI is mitigated by zero forcing (ZF) or minimum mean square error (MMSE) receivers. Moreover, successive interference cancellation (SIC) with optimal ordering algorithm is applied for rejecting CCI efficiently. And we analyzed and simulated the proposed system performance in Rayleigh fading channel. In order to justify the benefit of the proposed strategy, the overall system performance is illustrated in terms of bit error probability.

  • PDF

Hybrid-clustering game Algorithm for Resource Allocation in Macro-Femto HetNet

  • Ye, Fang;Dai, Jing;Li, Yibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1638-1654
    • /
    • 2018
  • The heterogeneous network (HetNet) has been one of the key technologies in Long Term Evolution-Advanced (LTE-A) with growing capacity and coverage demands. However, the introduction of femtocells has brought serious co-layer interference and cross-layer interference, which has been a major factor affecting system throughput. It is generally acknowledged that the resource allocation has significant impact on suppressing interference and improving the system performance. In this paper, we propose a hybrid-clustering algorithm based on the $Mat{\acute{e}}rn$ hard-core process (MHP) to restrain two kinds of co-channel interference in the HetNet. As the impracticality of the hexagonal grid model and the homogeneous Poisson point process model whose points distribute completely randomly to establish the system model. The HetNet model based on the MHP is adopted to satisfy the negative correlation distribution of base stations in this paper. Base on the system model, the spectrum sharing problem with restricted spectrum resources is further analyzed. On the basis of location information and the interference relation of base stations, a hybrid clustering method, which takes into accounts the fairness of two types of base stations is firstly proposed. Then, auction mechanism is discussed to achieve the spectrum sharing inside each cluster, avoiding the spectrum resource waste. Through combining the clustering theory and auction mechanism, the proposed novel algorithm can be applied to restrain the cross-layer interference and co-layer interference of HetNet, which has a high density of base stations. Simulation results show that spectral efficiency and system throughput increase to a certain degree.

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.

Coordinated Multi-Point Communications with Channel Selection for In-building Small-cell Networks (건물 내 스몰셀 네트워크에서 채널 선택 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • This paper proposes a coordinated multi-point communication (CoMP) method with channel selection to improve performance of a macro user equipment (MUE) in a dense small-cell network environment in a building located within coverage of a macro base station (MBS). In the proposed CoMP method, in order to improve the performance of the MUE located in the building, A small-cell base station (SBS) selects a channel with lower interference to the neighboring MUE and transmits appropriate signals to the MUE requiring CoMP. Simulation results show that the proposed CoMP method improves the performance of the MUE by up to 164% and 51%, respectivley, compared to a random channel allocation based traditional SBS network and CoMP method.

An Effective Coverage Extension Scheme for Trisector Cellular Systems using Multi-hop Relay based on IEEE 802.16j (IEEE 802.16j 기반의 중계기를 도입한 3섹터 셀룰러 시스템에서 효율적인 기지국 커버리지 확장 기법)

  • Yoo, Chang-Jin;Kim, Seung-Yeon;Cho, Choong-Ho;Lee, Hyong-Woo;Ryu, Seung-Wan
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • In this paper, We analysis of effective coverage extension for Tri-sector cellular systems using Multi-hop Relay based on IEEE802.16j system. In the proposed international standard of IEEE 802.16j MMR (Mobile Multi-hop Relay) use of the omni-directional antenna, 3-sector and 6-sector antenna is considered to Base Station and Relay Station. Omni-directional antenna service can offer as all directions but a throughput decreases due to the signal interference of near Relay Stations. In the directional antenna, cause of an interference with the base station which it arranges an antenna so that a beam can have the direct and does with neighbor Base Station and Relay Station can be reduced interference, therefore the effective throughput is higher than the omni-directional antenna system. But, In case of Base Station and Relay Station use the directional antenna, the efficiency which the directional antenna has the Co-channel interference due to in the different cell by the channel reuse is decreased. In this study, we propose the structure of arranging the Base Station and Relay Station having the directional antenna in the NBTC, WBTC antenna in a multi-tier. It compared and analyzed with the mode that the multi-hop Relay Station has the omni-directional antenna, Relay Station are used the NBTC antenna and the WBTC antenna system also, We analyze a relation between the performance degradation and the cell coverage extension which it follows because the number of hop in the multi-hop Relay Station.

No Blind Spot: Network Coverage Enhancement Through Joint Cooperation and Frequency Reuse

  • Zhong, Yi;Qiao, Pengcheng;Zhang, Wenyi;Zheng, Fu-chun
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.773-783
    • /
    • 2016
  • Both coordinated multi-point transmission and frequency reuse are effective approaches to mitigate inter-cell interference and improve network coverage. The motivation of this work is to explore the manner to effectively utilize the spectrum resource by reasonably combining cooperation and frequency reuse. The $Mat{\acute{e}}rn$ cluster process, which is appropriate to model networks with hot spots, is used to model the spatial distribution of base stations. Two cooperative mechanisms, coherent and non-coherent joint transmission (JT), are analyzed and compared. We also evaluate the effect of multiple antennas and imperfect channel state information. The simulation reveals that the proposed approach to combine cooperation and frequency reuse is effective to improve the network coverage for users located at both the center and the boundary of the cooperative region.

Protection of Incumbent Services and Its Impact on Coverage of TV Band Device Networks in TV White Space

  • Kang, Kyu-Min;Park, Jae Cheol;Cho, Sang-In;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.112-122
    • /
    • 2016
  • This paper presents a set of candidate regulatory requirements for TV band devices (TVBDs) in the Rep. of Korea. To guarantee the protection of incumbent services, especially digital TV (DTV) and wireless microphones, in TV frequency bands, we suggest minimum separation distances of TVBDs from the noise-limited contour according to incumbent users and TVBD types. This paper also deals with multiple sets of separation distances of a co-channel TVBD network from a DTV protected contour on the basis of the radio propagation characteristics of different geographic areas to make good use of TV white space (TVWS) and safely protect the DTV service. We present a low-power transmission mode of TVBDs and the relevant separation distances for small-cell deployment. The service coverage reduction ratio of a TVBD network is investigated in the presence of DTV interference in four geographic areas. The TVWS field verification results, conducted on the island of Jeju (Rep. of Korea), show that incumbent services operate well without harmful interference from neighboring TVBDs with the proposed separation distances.

Performance Analysis of Mobile Multi-hop Relay Uplink System in Multicell Environments (멀티셀 환경에서 Mobile Multi-hop Relay 상향링크 시스템의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.394-400
    • /
    • 2010
  • Mobile Multi-hop Relaying (MMR) system can provide increased system capacity of wireless access network by coverage extension and enhanced transmission rate within the Base Station (BS) coverage area. The previous researches for the MMR system with a non-transparent mode Relay Station (RS) do not consider channel selection procedure of Mobile Station (MS), co-channel interference and Multi-hop Relay Base Station (MR-BS) coverage and RS coverage ratio in MMR system. In this paper, we investigate the performance of MMR uplink system in multicell environments with various topologies. The performance is presented in terms of call blocking probability, channel utilization, outage probability and system throughput by varying offered load. It is found that, for certain system parameters, the MMR uplink system achieve the maximum system throughput when MR-BS coverage to RS coverage ratio is 7.