• Title/Summary/Keyword: cmos

Search Result 4,096, Processing Time 0.043 seconds

A Study of 0.5-bit Resolution for True-Time Delay of Phased-Array Antenna System

  • Cha, Junwoo;Park, Youngcheol
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.96-103
    • /
    • 2022
  • This paper presents the analysis of increasing the resolution of True-Time-Delay (TTD) by 0.5-bit for phased-array antenna system which is one of the Multiple-Input and Multiple Output (MIMO) technologies. For the analysis, a 5.5-bit True-Time Delay (TTD) integrated circuit is designed and analyzed in terms of beam steering performance. In order to increase the number of effective bits, the designed 5.5-bit TTD uses Single Pole Triple Throw (SP3T) and Double Pole Triple Throw (DP3T) switches, and this method can minimize the circuit area by inserting the minimum time delay of 0.5-bit. Furthermore, the circuit mostly maintains the performance of the circuit with the fully added bits. The idea of adding 0.5-bit is verified by analyzing the relation between the number of bits and array elements. The 5.5-bit TTD is designed using 0.18 ㎛ RF CMOS process and the estimated size of the designed circuit excluding the pad is 0.57×1.53 mm2. In contrast to the conventional phase shifter which has distortion of scanning angle known as beam squint phenomenon, the proposed TTD circuit has constant time delays for all states across a wide frequency range of 4 - 20 GHz with minimized power consumption. The minimum time delay is designed to have 1.1 ps and 2.2 ps for the 0.5-bit option and the normal 1-bit option, respectively. A simulation for beam patterns where the 10 phased-array antenna is assumed at 10 GHz confirms that the 0.5-bit concept suppresses the pointing error and the relative power error by up to 1.5 degrees and 80 mW, respectively, compared to the conventional 5-bit TTD circuit.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.

Micro-CT System for Small Animal Imaging (소동물영상을 위한 마이크로 컴퓨터단층촬영장치)

  • Nam, Ki-Yong;Kim, Kyong-Woo;Kim, Jae-Hee;Son, Hyun-Hwa;Ryu, Jeong-Hyun;Kang, Seoung-Hoon;Chon, Kwon-Su;Park, Seong-Hoon;Yoon, Kwon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.102-112
    • /
    • 2008
  • We developed a high-resolution micro-CT system based on rotational gantry and flat-panel detector for live mouse imaging. This system is composed primarily of an x-ray source with micro-focal spot size, a CMOS (complementary metal oxide semiconductor) flat panel detector coupled with Csl (TI) (thallium-doped cesium iodide) scintillator, a linearly moving couch, a rotational gantry coupled with positioning encoder, and a parallel processing system for image data. This system was designed to be of the gantry-rotation type which has several advantages in obtaining CT images of live mice, namely, the relative ease of minimizing the motion artifact of the mice and the capability of administering respiratory anesthesia during scanning. We evaluated the spatial resolution, image contrast, and uniformity of the CT system using CT phantoms. As the results, the spatial resolution of the system was approximately the 11.3 cycles/mm at 10% of the MTF curve, and the radiation dose to the mice was 81.5 mGy. The minimal resolving contrast was found to be less than 46 CT numbers on low-contrast phantom imaging test. We found that the image non-uniformity was approximately 70 CT numbers at a voxel size of ${\sim}55{\times}55{\times}X100\;{\mu}^3$. We present the image test results of the skull and lung, and body of the live mice.

  • PDF

A Non-Calibrated 2x Interleaved 10b 120MS/s Pipeline SAR ADC with Minimized Channel Offset Mismatch (보정기법 없이 채널 간 오프셋 부정합을 최소화한 2x Interleaved 10비트 120MS/s 파이프라인 SAR ADC)

  • Cho, Young-Sae;Shim, Hyun-Sun;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.63-73
    • /
    • 2015
  • This work proposes a 2-channel time-interleaved (T-I) 10b 120MS/s pipeline SAR ADC minimizing offset mismatch between channels without any calibration scheme. The proposed ADC employs a 2-channel SAR and T-I topology based on a 2-step pipeline ADC with 4b and 7b in the first and second stage for high conversion rate and low power consumption. Analog circuits such as comparator and residue amplifier are shared between channels to minimize power consumption, chip area, and offset mismatch which limits the ADC linearity in the conventional T-I architecture, without any calibration scheme. The TSPC D flip-flop with a short propagation delay and a small number of transistors is used in the SAR logic instead of the conventional static D flip-flop to achieve high-speed SAR operation as well as low power consumption and chip area. Three separate reference voltage drivers for 4b SAR, 7b SAR circuits and a single residue amplifier prevent undesirable disturbance among the reference voltages due to each different switching operation and minimize gain mismatch between channels. High-frequency clocks with a controllable duty cycle are generated on chip to eliminate the need of external complicated high-frequency clocks for SAR operation. The prototype ADC in a 45nm CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 0.77LSB, with a maximum SNDR and SFDR of 50.9dB and 59.7dB at 120MS/s, respectively. The proposed ADC occupies an active die area of 0.36mm2 and consumes 8.8mW at a 1.1V supply voltage.

An Area-Efficient Time-Shared 10b DAC for AMOLED Column Driver IC Applications (AMOLED 컬럼 구동회로 응용을 위한 시분할 기법 기반의 면적 효율적인 10b DAC)

  • Kim, Won-Kang;An, Tai-Ji;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.87-97
    • /
    • 2016
  • This work proposes a time-shared 10b DAC based on a two-step resistor string to minimize the effective area of a DAC channel for driving each AMOLED display column. The proposed DAC shows a lower effective DAC area per unit column driver and a faster conversion speed than the conventional DACs by employing a time-shared DEMUX and a ROM-based two-step decoder of 6b and 4b in the first and second resistor string. In the second-stage 4b floating resistor string, a simple current source rather than a unity-gain buffer decreases the loading effect and chip area of a DAC channel and eliminates offset mismatch between channels caused by buffer amplifiers. The proposed 1-to-24 DEMUX enables a single DAC channel to drive 24 columns sequentially with a single-phase clock and a 5b binary counter. A 0.9pF sampling capacitor and a small-sized source follower in the input stage of each column-driving buffer amplifier decrease the effect due to channel charge injection and improve the output settling accuracy of the buffer amplifier while using the top-plate sampling scheme in the proposed DAC. The proposed DAC in a $0.18{\mu}m$ CMOS shows a signal settling time of 62.5ns during code transitions from '$000_{16}$' to '$3FF_{16}$'. The prototype DAC occupies a unit channel area of $0.058mm^2$ and an effective unit channel area of $0.002mm^2$ while consuming 6.08mW with analog and digital power supplies of 3.3V and 1.8V, respectively.

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Design and Hardware Implementation of High-Speed Variable-Length RSA Cryptosystem (가변길이 고속 RSA 암호시스템의 설계 및 하드웨어 구현)

  • 박진영;서영호;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.9C
    • /
    • pp.861-870
    • /
    • 2002
  • In this paper, with targeting on the drawback of RSA of operation speed, a new 1024-bit RSA cryptosystem has been proposed and implemented in hardware to increase the operational speed and perform the variable-length encryption. The proposed cryptosystem mainly consists of the modular exponentiation part and the modular multiplication part. For the modular exponentiation, the RL-binary method, which performs squaring and modular multiplying in parallel, was improved, and then applied. And 4-stage CSA structure and radix-4 booth algorithm were applied to enhance the variable-length operation and reduce the number of partial product in modular multiplication arithmetic. The proposed RSA cryptosystem which can calculate at most 1024 bits at a tittle was mapped into the integrated circuit using the Hynix Phantom Cell Library for Hynix 0.35㎛ 2-Poly 4-Metal CMOS process. Also, the result of software implementation, which had been programmed prior to the hardware research, has been used to verify the operation of the hardware system. The size of the result from the hardware implementation was about 190k gate count and the operational clock frequency was 150㎒. By considering a variable-length of modulus number, the baud rate of the proposed scheme is one and half times faster than the previous works. Therefore, the proposed high speed variable-length RSA cryptosystem should be able to be used in various information security system which requires high speed operation.

RF Magnetron Sputtering 및 Evaporation을 이용하여 증착한 CdTe 박막의 물성평가

  • Kim, Min-Je;Jo, Sang-Hyeon;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.345-345
    • /
    • 2012
  • 최근 의료산업에서는 고해상도 및 동영상 구현이 가능한 직접 방식의 X-선 검측센서에서 X-ray 흡수효율이 좋은 반도체 센서(CdTe, CdZnTe 등)와 성숙된 기술, 집적효율이 뛰어난 CMOS 공정을 이용한 제품을 출시하여 대면적화 및 고집적화가 가능하게 되어 응용분야가 점차 확대되고 있는 추세이다. 하지만 이 역시 고 성능의 X-선 동영상 구현을 위해서는 고 해상도 문제, 검출효율 문제, 대면적화의 어려움이 있다. 기존의 X-선 광 도전층의 증착은 증착 속도와 박막 품질에서 우수한 Evaporation 법이 사용되고 있다. 한편, 대면적에 균일한 박막형성이 가능하기 때문에 양산성에서 우월성을 가지는 sputtering법의 경우, 밀도가 높은 소결체 타겟의 제조가 힘들뿐만 아니라 증착 속도가 낮아 장시간 증착 시 낮은 소결밀도로 인한 타겟 Particle 영향으로 인해서 대 면적에 고품질의 박막을 형성하기가 어렵다. 하지만 최근 소결체 타겟 제조기술 발달과 함께, 대면적화와 장시간 증착에 대한 어려움이 해결되고 있어 sputtering 법을 이용한 고품질 박막 제조 기술의 연구가 시급한 실정이다. 본 연구에서는 $50{\times}50$ mm 크기의 non-alkali 유리기판(Corning E2000) 위에 Evaporation과 RF magnetron sputtering을 사용하여 다양한 기판온도 (RT, 100, 200, 300, $350^{\circ}C$)에서 $1{\mu}m$의 두께로 CdTe 박막을 증착하였다. RF magnetron sputtering의 경우 CdTe 단일 타겟(50:50 at%)을 사용하였으며 Base pressure는 약 $5{\times}10^{-6}$ Torr 이하까지 배기하였고, Working pressure는 약 $7.5{\times}10^{-3}$ Torr에서 증착하였다. 시편과 기판 사이의 거리는 70 mm이며 RF 파워는 150 W로 유지하였다. CdTe 박막의 미세구조는 X-ray diffraction (XRD, BRUKER GADDS) 및 Field Emission Scanning Electron Microscopy (FE-SEM, Hitachi)를 사용하여 측정하였다. 또한, 조건별 박막의 조성은 Energy Dispersive X-ray Spectroscopy (EDS, Horiba, 7395-H)을 사용하여 평가하였다. X-선 동영상 장치의 구현을 위해서는 CdTe 다결정 박막의 높은 흡수효율, 전하수집효율 및 SNR (Signal to Noise Ratio) 등의 물성이 요구된다. 이러한 물성을 나타내기 위해서는 CdTe 박막의 높은 결정성이 중요하다. Evaporation과 RF magnetron sputtering로 제작된 CdTe 박막은 공정 온도가 증가함에 따라 기판상에 도달하는 스퍼터 원자의 에너지 증가로 인해서 결정립이 성장한 것을 확인할 수 있었다. 따라서 CdTe 박막이 직접변환방식 고감도 X-ray 검출기 광도 전층 역할을 수행할 수 있을 것으로 기대된다.

  • PDF

Power Supply-Insensitive Gbps Low Power LVDS I/O Circuits (공급 전압 변화에 둔감한 Gbps급 저전력 LVDS I/O회로)

  • Kim, Jae-Gon;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents power supply-insensitive Gbps low power LVDS I/O circuits. The proposed LVDS I/O has been designed and simulated using 1.8V, $0.18\;{\mu}m$ TSMC CMOS Process. The LVDS I/O includes transmitter and receiver parts. The transmitter circuits consist of a differential phase splitter and an output stage with the switched capacitor common mode feedback(SC-CMFB). The differential phase splitter generates a pair of differential signals which provides a balanced duty $cycle(50{\pm}2%)$ and phase difference$(180{\pm}0.2^{\circ})$ over a wide supply voltage range. Also, $V_{OD}$ voltage is 250 mV which is the smallest value of the permissible $V_{OD}$ range for low power operation. The output buffer maintains the required $V_{CM}$ within the permissible range$(1.2{\pm}0.1V)$ due to the SC-CMFB. The receiver covers a wide input DC offset $range(0.2{\sim}2.6\;V)$ with 38 mV hysteresis and Produces a rail-to-rail output over a wide supply voltage range. Beside, the designed receiver has 38.9 dB gain at 1 GHz, which is higher than conventional receivers.