• Title/Summary/Keyword: clustering algorithms

Search Result 606, Processing Time 0.031 seconds

On hierarchical clustering in sufficient dimension reduction

  • Yoo, Chaeyeon;Yoo, Younju;Um, Hye Yeon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.431-443
    • /
    • 2020
  • The K-means clustering algorithm has had successful application in sufficient dimension reduction. Unfortunately, the algorithm does have reproducibility and nestness, which will be discussed in this paper. These are clear deficits for the K-means clustering algorithm; however, the hierarchical clustering algorithm has both reproducibility and nestness, but intensive comparison between K-means and hierarchical clustering algorithm has not yet been done in a sufficient dimension reduction context. In this paper, we rigorously study the two clustering algorithms for two popular sufficient dimension reduction methodology of inverse mean and clustering mean methods throughout intensive numerical studies. Simulation studies and two real data examples confirm that the use of hierarchical clustering algorithm has a potential advantage over the K-means algorithm.

A Mixed Co-clustering Algorithm Based on Information Bottleneck

  • Liu, Yongli;Duan, Tianyi;Wan, Xing;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1467-1486
    • /
    • 2017
  • Fuzzy co-clustering is sensitive to noise data. To overcome this noise sensitivity defect, possibilistic clustering relaxes the constraints in FCM-type fuzzy (co-)clustering. In this paper, we introduce a new possibilistic fuzzy co-clustering algorithm based on information bottleneck (ibPFCC). This algorithm combines fuzzy co-clustering and possibilistic clustering, and formulates an objective function which includes a distance function that employs information bottleneck theory to measure the distance between feature data point and feature cluster centroid. Many experiments were conducted on three datasets and one artificial dataset. Experimental results show that ibPFCC is better than such prominent fuzzy (co-)clustering algorithms as FCM, FCCM, RFCC and FCCI, in terms of accuracy and robustness.

Automatic Fuzzy Rule Generation Utilizing Genetic Algorithms

  • Hee, Soo-Hwang;Kwang, Bang-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.40-49
    • /
    • 1992
  • In this paper, an approach to identify fuzzy rules is proposed. The decision of the optimal number of fuzzy rule is made by means of fuzzy c-means clustering. The identification of the parameters of fuzzy implications is carried out by use of genetic algorithms. For the efficinet and fast parameter identification, the reduction thechnique of search areas of genetica algorithms is proposed. The feasibility of the proposed approach is evaluated through the identification of the fuzzy model to describe an input-output relation of Gas Furnace. Despite the simplicity of the propsed apprach the accuracy of the identified fuzzy model of gas furnace is superior as compared with that of other fuzzy modles.

  • PDF

Application of Principal Component Analysis Prior to Cluster Analysis in the Concept of Informative Variables

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1057-1068
    • /
    • 2003
  • Results of using principal component analysis prior to cluster analysis are compared with results from applying agglomerative clustering algorithm alone. The retrieval ability of the agglomerative clustering algorithm is improved by using principal components prior to cluster analysis in some situations. On the other hand, the loss in retrieval ability for the agglomerative clustering algorithms decreases, as the number of informative variables increases, where the informative variables are the variables that have distinct information(or, necessary information) compared to other variables.

Image Segmentation and Labeling Using Clustering and Fuzzy Algorithm (Clustering 기법과 Fuzzy 기법을 이용한 영상 분할과 라벨링)

  • 이성규;김동기;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.241-241
    • /
    • 2000
  • In this Paper, we present a new efficient algorithm that can segment an object in the image. There are many algorithms for segmentation and many studies for criteria or threshold value. But, if the environment or brightness is changed, their would not be suitable. Accordingly, we apply a clustering algorithm for adopting and compensating environmental factors. And applying labeling method, we try arranging segment by the similarity that calculated with the fuzzy algorithm. we also present simulations for searching an object and show that the algorithm is somewhat more efficient than the other algorithm.

  • PDF

Fast Super-Resolution Algorithm Based on Dictionary Size Reduction Using k-Means Clustering

  • Jeong, Shin-Cheol;Song, Byung-Cheol
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.596-602
    • /
    • 2010
  • This paper proposes a computationally efficient learning-based super-resolution algorithm using k-means clustering. Conventional learning-based super-resolution requires a huge dictionary for reliable performance, which brings about a tremendous memory cost as well as a burdensome matching computation. In order to overcome this problem, the proposed algorithm significantly reduces the size of the trained dictionary by properly clustering similar patches at the learning phase. Experimental results show that the proposed algorithm provides superior visual quality to the conventional algorithms, while needing much less computational complexity.

Heuristic algorithm to raise efficiency in clustering (군집의 효율향상을 위한 휴리스틱 알고리즘)

  • Lee, Seog-Hwan;Park, Seung-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.157-166
    • /
    • 2009
  • In this study, we developed a heuristic algorithm to get better efficiency of clustering than conventional algorithms. Conventional clustering algorithm had lower efficiency of clustering as there were no solid method for selecting initial center of cluster and as they had difficulty in search solution for clustering. EMC(Expanded Moving Center) heuristic algorithm was suggested to clear the problem of low efficiency in clustering. We developed algorithm to select initial center of cluster and search solution systematically in clustering. Experiments of clustering are performed to evaluate performance of EMC heuristic algorithm. Squared-error of EMC heuristic algorithm showed better performance for real case study and improved greatly with increase of cluster number than the other ones.

An Efficient Large Graph Clustering Technique based on Min-Hash (Min-Hash를 이용한 효율적인 대용량 그래프 클러스터링 기법)

  • Lee, Seok-Joo;Min, Jun-Ki
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Graph clustering is widely used to analyze a graph and identify the properties of a graph by generating clusters consisting of similar vertices. Recently, large graph data is generated in diverse applications such as Social Network Services (SNS), the World Wide Web (WWW), and telephone networks. Therefore, the importance of graph clustering algorithms that process large graph data efficiently becomes increased. In this paper, we propose an effective clustering algorithm which generates clusters for large graph data efficiently. Our proposed algorithm effectively estimates similarities between clusters in graph data using Min-Hash and constructs clusters according to the computed similarities. In our experiment with real-world data sets, we demonstrate the efficiency of our proposed algorithm by comparing with existing algorithms.

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 계층적 클러스터링 알고리즘)

  • Cha, Si-Ho;Lee, Jong-Eon;Choi, Seok-Man
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Clustering allows hierarchical structures to be built on the nodes and enables more efficient use of scarce resources, such as frequency spectrum, bandwidth, and energy in wireless sensor networks (WSNs). This paper proposes a hierarchical clustering algorithm called EEHC which is more energy efficient than existing algorithms for WSNs, It introduces region node selection as well as cluster head election based on the residual battery capacity of nodes to reduce the costs of managing sensor nodes and of the communication among them. The role of cluster heads or region nodes is rotated among nodes to achieve load balancing and extend the lifetime of every individual sensor node. To do this, EEHC clusters periodically to select cluster heads that are richer in residual energy level, compared to the other nodes, according to clustering policies from administrators. To prove the performance improvement of EEHC, the ns-2 simulator was used. The results show that it can reduce the energy and bandwidth consumption for organizing and managing WSNs comparing it with existing algorithms.