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ABSTRACT

In this paper, an approach to identify fuzzy rules is proposed. The decision of the optimal
number of fuzzy rule is made by means of fuzzy c-means clustering. The identification of the
parameters of fuzzy implications is carried out by use of genetic algorithms. For the efficient
and fast parameter identification, the reduction technique of search areas of genetic
algorithms is proposed. The feasibility of the proposed approach is evaluated through the
identification of the fuzzy model to describe an input-output relation of Gas Furnace. Despite
the simplicity of the proposed approach the accuracy of the identified fuzzy model of gas fur-
nace is superior as compared with that of other fuzzy models.
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1. INTRODUCTION

In this paper, the identification of fuzzy rules is classified into the optimal number of fuzzy
implications and the identification of the parameters defining membership functions in each
fuzzy implication. The optimal number of the membership functions of each input variable is
determined by soft c-means clustering. The optimal number of fuzzy rules is determined by the
multiplication of the cluster numbers of each input variable under the assumption that input
variables are mutually independent. The identification of the parameters is carried out
utilizing genetic algorithms which display an excellent robustness in complex optimization
problems. For an efficient and fast identification of parameters, the reduction technique of
search areas of genetic algorithms is proposed. Schematic diagram of the identification pro-
cedure is shown in Fig. 1. The feasibility of the proposed approach is evaluated through the
identification of the fuzzy model to describe an input-output relation of Gas Furnace by use of
data which were previously presented®!.

2. FUZZY IMPLICATION AND REASONING

The format of fuzzy implication and reasoning algorithm is described as follows:

Journal of Fuzzy Logic and Intelligent Systems 1992 Vol.2, No.3.

40



Automatic Fuzzy Rule Generation Utilizing Genetic Algorithms

SCM CLUSTERING

!

————— STRUCTURE IDENTIFICATION

=l

TARGET DATA FUZZY RULE

L1 PARAMETER IDENTIFICATION

i

GENETIC ALGORITHMS

Fig. 1. Schematic diagram of the identification procedure

2.1. Format of implication

We consider an ith fuzzy implication, R'.
R':If x1 is Small and x: is Big, then y;=wi - a: + b
where Small and Big are fuzzy lables of x: and x2, respectively, wi the degree of fulfillment of

the premise, and a: and bi consequent parameters.

2.2. Reasoning algorithm
Suppose implications Ri(i=1,2) of the above format.
R!:If x1 is Small and x: is Big, then y1 =w: - a: + b
R2:If xi is Big and x2 is Medium, then y2=w2 + az + bz
Fig. 2 shows the procedure of reasoning, where wi and w2 are caculated by eq. (1). Given input
data x1° and x2°, the output y* inferred from above two implications is obtained in terms of the

average of y: and y2 with the weights wi and wa.

W1 = sman(X1°)  Upig(x2°) (1)

w2 = UBig(X1°) * UMedium(x2°) 2)

W Wiyitwey:  wi-(wirar+bi) +war(wz-az +ba)

wi + w2 w1 + w2
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Fig- 2. procedure of reasoning

3. STRUCTURE IDENT!FICATION

The identification of structure which corresponds to the decision of the optimal number of
fuzzy implications to describe an input-output relation is carried out by means of soft c-means
clustering which produces a fuzzy c-partition of data set. Our purpose is to find the optimal or
sub-optimal numbers of clusters to effectively describe the relation between each input-output
value of a system under the assumption that input variables are mutually independent, and
then the number of fuzzy implications is determined to consider all possible combinations of
the partitioned input spaces of all input variables. For the brevity, we consider a system
composed of two inputs x: and x2 and one output y. If the optimal or sub-optimal cluster
numbers of xi-y and x2-y are c1 and ca, repectively, the optimal number of fuzzy implications
is ¢1-c2. The validity of partitioning is evaluated by a validity index, S according to the num-
ber of clusters. The appropriate values of clusters can be determined at lower value of S.

The soft c-means(SCM) clustering algorithm produces a fuzzy c-partition
of the data set X=1{X1.X2,....Xn}. The basic steps of the algorithm used in this paper are given
as follows!'!:

Step 1
Fix the number of cluster ¢(2 < ¢ < n), where n is number of data items.
Fix m(l <m< %), set p= 1, and initialize the fuzzy c partition, U*~ .
Step 2
Calculate the ¢ cluster centers {vi'?} with UP~ Y and the formula (3) for the ith cluster center.

()™ Xk
v =—" e 1=1,..d (3)
; (fik)™
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where d is dimension of data vector Xk, and pix= pi(Xx) is the membership grade of Xk in
fuzzy set ..
Step 3
Update U for k=1 to n.
(D Calculate Ik and Ik'.
L={i|1<i<c, Du=Xx—Vi[=0} Ik =11,2,...,c} —Ix
(2 For data item k, compute new membership values.
DIfIk=0, ux =Dt "™ if pu<{a/c), pk=0

Uik =,u|k/\; ik
Ifl #0, k=0 forall i€ lk’, and 3 pw=1.
@ Next k. e
Step 4
P=% T m 2
Jm A (@)™ Dk @)
Compare Jn® and Ju® V. If {Ju'? —Jn®- 1| <g, stop:
otherwise, set p=p + 1, and go to step 2.
Validity measure for fuzzy partitioning used in this paper is as follow'?:
k,_: l\:,l (™ | Xx—Vil?
S:
n - min | V;=Vi|? (5)
i

For the SCM algorithm with m=2 in eq. (4), the smallest S indeed indicates a valid optimal par-
tition.

4. PARAMETER IDENTIFICATION

The identification of parameters which define the membership functions of the premise and
coefficients of the consequent is carried out using genetic algorithms which provide an excel-

lent robustness in complex optimization problems.

4.1 Genetic aigorithms

Genetic algorithms are iterative adaptive general purpose search strategies based on the
principles of natural population genetics and natural selection. A simple genetic algorithm that
yields good results in many practical problems is composed of three operators: reproduction,
crossover, and mutation. Reprodution is a process in which individual strings are copied ac-
cording to their objective function(fitness function) values which we want to maximize.
Copying strings according to their fitness values means that strings with a higher value have a
higher probability of contributing one more offspring in the next generation. After repro-

duction, simple crossover may proceed in two steps. First, members of the newly reproduced
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strings in the mating pool are mated at random. Second, each pair of strings is selected uni-
formly at random between 1 and string length less one, L— 1. Two new strings are created by
swapping all characters between positions k+1 and L inclusively. Mutation is a secondary op-
erator whose use guarantees that the probability of searching a particular subregion of the
solution is never zero. These operators are simplicity itself, involving nothing more complex
than random number generation, string copying, and partial string exchanging:yet, despite
their simplicity, the resulting search performances is wide-ranging and impressive due to im-

plicit parallellism of genetic algorithm.

4.2 Fitness function

In many problems, the objective is stated as the minimization of some cost function rather
than the maximization of some utility or profit. In the parameter identification, our purpose is
to minimize the cost function, eq. (6) which is defined as the average of squared errors between

target output data and inferred output data.

E=

i1

71, 0 ., %)2

n (yl yi ) 6)
where n is the total number of data, y° target output value, yi* output inferred from fuzzy
implications,

With genetic algorithms. we use the following cost to fitness transformation:

Fitness function, f = 1. O/E (7)

4.3 Multiparameter coding

One successful method employed in coding multi-parameters of optimization problems is the
concatenated, multiparameter, mapped, and fixed point coding. To construct a multiparametr
coding, we can simply concatenate many single parameter codings which define the member-
ship functions of the premise and coefficients of the consequent. Each coding has its own
sublength L. its own minimum and maximum values, Pmin and Pmax, respectively, and the

precision of the decoded value is controlled by (Pmax—Pmin}/(2%— 1).

4.4 Reduction of search areas

For the efficient and fast convergence of genetic algorithms. the reduction technique of
search areas of the parameters is proposed. GAs learn by iteratively generating candidate
solutions through gdenetic operators, such as reproduction, crossover, and mutation and
testing the fitness of the solutions as shown in Fig. 3, in which the reduction is carried out
through the increment of Pmin and the decrement of Pmax of each parameter, where Pmax’s
and Pmin’s are obtained from the decoded values of m chromosomes whose fitness values are

greater than a value a.

44



Automatic Fuzzy Rule Generation Utilizing Genetic Algorithms

Generate random population, P(0):
Evaluate fitness of individuals in P(0):
freq =1, t =1
¥hile(t is less than max generation) {
Generate P(t+l) from P(t) as follows:
select the fittest individuals from P(t):
recombine them by crossover and mutation:
Evaluate the fitness of individuals in P(t+1):
¥hile(fitness value is greater than reduction criterion){
decode individuals:
decide the minimum and maximum ranges of parameters:
if(freq is equal to m) {
reduce search areas:

freq=1:
}
else freq = freq + 1:
}
t=t+1:

Retain the fittest individual:

Fig. 3. sequence of GAs by reduction of search areas.

5. SIMULATION

In this section. the feasibility of the proposed approach is evaluated through the identifi-
cation of the fuzzy model to describe an input-output relation of Gas Furnace. Our purpose is
to identify the fuzzy model which describe the relation between a gas flow ult) and the
combusted CO2 concentration y(t) of Gas Furnace using the 299 pairs of data presented by Box

and Jenkins!®. We consider ult-4) and y(t-1) as input variables of fuzzy implications, and y{t) as
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Fig. 4. Graph for the decision of cluster number in ult-4) vs. yft)
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Fig- 5. Graph for the decision of cluster number in y(t-1) vs. y(t)

output variable. A small S indicates a partition in which all the clusters are overall compact,
and separate to each other. Thus, our goal is to find the fuzzy c-partition with smaller S and
smaller ¢ in order to minimize the number of fuzzy implications. The appropriate numbers of
clusters which describe each input-output relation effectively are determined as 3, and 2 for cl

and c2 from the validity measure graphs for fuzzy clustering shown in Fig. 4 and Fig. 5, re-

spectively.

From the clustering results, the membership function of each input variable calculated by

step 3 of SCM clustering algorithms from each cluster of x1 and x2, are shown in Fig. 6 and
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Membership Functions
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Fig. 7. Membership values of y{t-1) calculated by SCM clustering with c2=2

Fig. 7, in which the membership function of input variables are defined as Positive, Zero, Nega-
tive for u(t-4), and Small and Big for y(t-1), respectively.

In order to eliminate the ripples of the membership functions shown in Fig. 6 and Fig. 7, we
transform them into triangular and trapezoidal membership functions. Using the transformed

membership functions, the fuzzy implications for modeling are composed of as follows:

A
Negative Zero Positive
l
¢ % u(t-4)
pl  p2  'p3 (X2.84)
H
Small Big
N
| $ y(t-1)
pd 5 (X60.5)

If u(t-4) is Negative & y(t-1) is Small, then y=a\ - w1 + b,
If u(t-4) is Negative & y(t-1) is Big, theny=a2 - w2+ b2
If ult-4) is Zero & y(t-1) is Small, theny=as- ws+bs
If ult-4) is Zero & y(t-1) is Big, then y=a4 - ws + ba
If u(t-4) is Positive & y(t-1) is Small, theny=as " ws + bs
If u(t-4) is Positive & y{t-1) is Big, then y=as - ws + bs
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In the fuzzy implications the parameter pi, p2,..., ps and ai, bi,..., as, bs are identified by
use of GAs. Initial parameters for GAs are as follows:population size is 50, length of
individuals 10, crossover rate 0.6, and mutation rate 0.033. The reduction was carried out at
the number of generation, 63 and 82. Fitness values calculated from the best strings in evolv-

ing populations are shown in Fig. 8.
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Fig. 8. Graph of fitness values for the reduction technique

Identified parameters are shown in Table 1, and mean square errors for the comparison with

other results in Table 2.

Table 1. |dentified parameters of fuzzy implications

Premise Consequent
. p1 | -0695 a1 | 6654 bl 44349 |
p2 -0.138 a2 1.951 b2 ! 58.025
;Egi 0.905—“5 a3 \ 2.394 1 b3 i 39.94
p4 0561 a4 0.15 ba " 58478
o ;;ék . 0989 ab -4.86 b5 41.989
T ‘ a6 . 3412 b6 51.274 |

Table 2. Comparison with other fuzzy model

Model Name Mean Square Error ' Number of Rules
¥7’7I;ong's model(4] 0.469 19
Pedrycz's modell5) ‘ 0.776 20 |
| Xu's modells] o328 25
‘Sugeno's modell7] 0355 6 |
~ Our model ' 0.187 6
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6. CONCLUSION

In spite of the simplicity of the proposed identification method, the accuracy of the identified
fuzzy model to describe input-output relation of gas furnace is superior as compared with that
of other fuzzy models, so the proposed method for the automatic generation of fuzzy ruels is

also able to be applied to the generation of the fuzzy control rules.
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