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Application of Principal Component Analysis
Prior to Cluster Analysis in the Concept of

Informative Variables
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Abstract

Results of using principal component analysis prior to cluster analysis are compared
with results from applying agglomerative clustering algorithm alone. The retrieval
ability of the agglomerative clustering algorithm is improved by using principal
components prior to cluster analysis in some situations. On the other hand, the loss
in retrieval ability for the agglomerative clustering algorithms decreases, as the
number of informative variables increases, where the informative variables are the
variables that have distinct information(or, necessary information) compared to other
variables.

Keywords : Agglomerative Clustering Algorithm; Principal Component Analysis; Informative
Variables

1. Introduction

Cluster analysis is concerned with the classification of objects, while principal component
techniques assess relationships between variables and may be concerned with the classification
of these variables. If a large number of variables are involved, it might be a practice to use
principal components with larger eigenvalues to reduce the number of variables prior to
cluster analysis.

In principal component analysis, lower eigenvalue factors are considered to be uninformative
while larger eigenvalue factors are informative. Chang(1983) investigated the effect of the
principal component analysis showing that the principal components with the larger
eigenvalues did not necessarily contain more information -with a mixture of two normal
distributions, saying the success of principal component analysis depends on various factors.
Chae(2002) considered the effect of the principal component analysis prior to cluster analysis
by comparing the results of discriminant analysis that performed on the clusterings generated
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by agglomerative clustering algorithms. In his study, the interpretation of the components
might be difficult if the number of principal components exceed a certain minimum number.
Fowlkes, Gnanadesikan and Kettenring(1988) mentioned that the inclusion of unnecessary
variables in a cluster analysis could cause more damage than in such other statistical
procedures as regression analysis.

From this point of view, adequate clustering of a data set requires considerable insight into
the relationships among variables. Also, informative cluster analysis of variables requires
moderate homogeneity among elements. Unfortunately, little prior knowledge on clustering of
either variables or objects is available in the majority of applications submitted for cluster
analysis. In most analyses, attention is focused on clustering either data units or variables
alone, but not both together. However, the whole question of simultaneous clustering of
elements and variables recently received serious study in Tibshirani et al.(1999) and shown
application in Perou et al.(1999).

The main objective of this study is to investigate the use of principal component analysis
prior to agglomerative clustering algorithms defined on the (4, m)-family discussed by DuBien
and Warde(1979, 1987), and Chae and Warde(1991). Also the effect of informative variables is
involved with various settings of parameters. The informative variables are the variables that
have distinct information(or, necessary information) compared to other variables, but have
equal or larger variance in this study. If all the variables are informative, the clusterings
generated by clustering algorithms should be more similar to the true structure of data points
than those with less informative,

For the purpose of this study, the effect of principal component analysis on variables prior
to using agglomerative clustering algorithms is evaluated by Rand’s(1971) C statistic. This
statistic is a measure of similarity with 0<C<1, and there is a perfect agreement within

clusters if C=1.0. As an example, the results of using principal components prior to cluster
analysis are compared by applying agglomerative clustering algorithms on the cell cycle data
that includes identified genes from Spellman et al.(1998) define.

2. Cluster Analysis and Principal Component Analysis
The basic concepts of cluster analysis are the elements to be clustered which are data
points, the set of all elements to be clustered which is the object space, and cluster which is

an operationally determined collection of data points. 'Letting N be the number of data points

with p variables, then NXp matrix of measurements, say X, might be
Xp=X"=1X, Xy Xy XM7

where X, represents a pX1 vector on the i-th objects. Thus, X" indicates that there are
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N data points in object space in X. Then a cluster, v, is simply a nonempty subset of the
object space, and a clustering, Y = (y;, ¥, ...., ¥u), is any partition of the object space.
The number of clusters, K, contained in a clustering shall be referred to as the size of the
clustering. Some notations useful for understanding a cluster, a clustering, an hierarchy and an
agglomerative clustering methods can be found in DuBien and Warde(1987), and Chae and
Warde(1991).

For the purpose of this study, the squared Euclidean distance, which is a semi-metric
measure of distance, is used for the dissimilarity between data points. The ‘‘true’’ structure

of the N data points with number of clusters, K, is presented as Y. Then Y™ is an initial
clustering and YV s a certain type of rearrangement of a initial clustering with K
number of clusters. Let Y denote a clustering that result from applying an agglomerative
clustering algorithm to the N data points with number of clusters, K. Then C(Y, Y') is a
measure of the ‘‘retrieval’’ ability of the agglomerative clustering algorithm to the true
structure for K.

Letting d; denote the joining distance between cluster y; and cluster y; in clustering
YINE - where  y,, y;€ yWH g=1,2,--,N. Then yuy=y:Uy; will denote the new

cluster within clustering y™E-U 1t should be noted that the joining distance, d;, is
always the smallest distance remaining in the set of all distances between clusters in
clustering y A

For any clustering Y™ in the hierarchy, if the distances d; dg and dj between

pairs of clusters y;, y;, and y, are obtained recursively from clustering Y[N'KH], K{N,

[N, K]

then the distance between the new cluster y(; and any other cluster y,€Y can be

computed from the following formula:

d(i;)k — L_;_L"_ZJL djk + _I:_QL__Z_LT dik + .Bd;'j

where d;; < dy < dj This formula represents a two parameter (B, m)-family of

agglomerative clustering algorithms derived by DuBien and Warde(1979) by placing a suitable
set of constraints on the parameters originally given in Lance and William’s equation(1966,
1967).

Nine agglomerative clustering algorithms are chosen from the (B, =n)-family of
agglomerative clustering algorithms based on the rationale discussed by DuBien and
Warde(1987). The (B, m) values that define these algorithms are as follows:
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1 B= 0.0 with == —0.5, 0.0, 0.5;
(2) B= —0.25 with x= -—0.25, 0.0, 0.5
3) = —0.5 with 7= 0.0, 0.25, 0.75;

In the (B8, m)-family, (0.0, -0.5) is known as single linkage; (0.0, 0.0) as average linkage;
(0.0, 05) as complete linkage; (-0.25, 0.0) or (-0.5, 0.0) as representations of the flexible
strategy; (-0.5, 0.75) is the recommendation by DuBien and Warde(1987).

Hence the results of using principal component analysis prior to applying nine agglomerative
clustering algorithms are investigated with various settings on the parameters.

In this study, a principal component analysis of the correlation matrix instead of covariance
matrix is applied since the sample correlation matrix is invariant under scale changes. Let the

correlation matrix be identical to the covariance matrix 2. Then the j— th eigenvalue of 2 is
distinct, and the corresponding normalized eigenvector e; is uniquely defined. General

information to understand on principal component analysis may be found in Johnson and
Wichern(1982)

3. Design of Simulation Study

Some of the possible structural parameters considered in this study are defined as follows:
. N, the number of data points in X,

. D, the number of variables;

1
2
3. #n,, the split or the size of the k— th cluster generated from each population;
4. ¢, the distance between mean vectors,

5

. %, the covariance matrix.
For convenience, N=60, p=9, and k=3 in this study. Then a brief summary of data

structure may be outlined as follows:

where g=1,2,3, i=1,2,-,60 with split into %=3 populations of (n;;nyn;)=
(20;20;,20), #g £=1,...,k is constrained by an equilateral triangle spatial configuration,

ﬂ‘ = (0.0 c10, €10, 0. 0.0 98, 36, 36, 00)
= (Clac 0.0 Clac 028c 0260 0.0 0.0 C36¢ 036‘.)'
"= (18, 18, 0.0 0.0 ¢35 cp8. €38, 0.0 €380

I
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where (ci5¢0¢3) = [ (1;,0;0), (1;1;0), (1;1;1)], then the squared Euclidean distances between

mean vectors are &= 8.X V 2.0x i',lc,? depending on the settings of population mean
&

vectors, where 8= 2.0, 4.0. In these cases, the distance among mean vectors is the same
regardless of the settings on the population mean vectors and the numbers of informative

variables for each &= 2.0, 4.0. For this reason, &, should be changed depending on the

value of Zlc,z. If gcf is large, 6, would be small. Among the settings of (c;;¢9¢3) in

this study, the setting (1;1;1;) on nine variables is the most informative, while (1;0;0) is
the least informative. Here the covariance matrix is

A B B 1.0 o o /A
2,=2= A B|, A= 1.0 o|, B= 77
A 1.0 7

where o= .6, .9 and 7= .0, .2, .4.

With this structural settings on parameters, it was possible to produce each of the results
from clustering algorithms applied to original data and data obtained from principal component
analysis.

Let ¥ and Y denote clusterings that result from applying an agglomerative clustering
algorithm to the N original data points and data obtained from principal component analysis

with number of clusters, K, respectively. For each setting of (8, o, 7, (¢1;¢9¢3)), the values

of C(Y,Y) and C(Y,Y ) for the nine (B, 7) clustering algorithms were generated by
following steps:
1. An object space X y«, of data points was generated;
2. The squared Euclidean distance between each pair of data points in X was
computed and stored in lower triangular matrix order by rows as the vector D;;
3. Principal component analysis was applied to X, and three principal components
( g=3) were chosen if their eigenvalues were greater than or equal to one and
sum of percentages was greater than 70 percent of the Avariance;

4. The squared Euclidean distance between each pair of data points from X using
three principal components was computed and stored in lower triangular matrix

order by rows as the vector Ds,;

5. Each of the nine clustering algorithms was applied to D; and D, to produce two

different clusterings, Y and Y ;
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6. For each of the clusterings, ¥ and Y , from above steps, C(Y,Y') and

C(Y,Y ") were calculated for the nine clustering algorithms.

For each setting of the (4, o, 7, (¢1;¢5¢3)), the above sequence of steps was replicated

100 times and the sample means, *C—, were computed. Consequently, "C has been obtained for
each setting of the (8, p, 7, (¢;¢9¢3)) on the data set to quantify the ‘‘retrieval’’ ability for

the nine agglomerative clustering algorithms alone and for the agglomerative clustering

algorithms after applying principal component analysis.

4. Results from Simulation

All results from comparative study given as C computed over 100 replications are

discussed in terms of changes in the (4, o, 7, (c;;c9¢3)) and changes in (8, m) which

defines the agglomerative clustering algorithms. In the form of _C( Y, Y‘) and (( Y, Y”),
the retrieval ability of clustering algorithms are represented for original data and using
principal component analysis, respectively. Although the nine clustering algorithms were
studied, only the results from single linkage, average linkage, complete linkage, two
representations of the flexible strategy and (-5, .75) with two settings of (c¢j;cqc3)=

{ (1;0;0), (1;1;1)} are summarized. The results on the use of the other clustering algorithms

with settings of (c¢y; ¢y ¢3) followed the same trend as shown in those tables presented.

As shown in tables 1-2, the difference in trends of recovery based on C(Y,Y) and
"C(Y,Y) is mainly due to the settings of (cj;cycy) and the correlation structures
designed into the original data. For the setting with (c¢;;c¢5¢3) =(1;0;0), the recovery
decreases as 7 increases for the original data, while the recovery increases or stays in stable
for the use of principal components(see table 1). However, for the setting with
(e e3) =(1;1;1), the recovery decreases as 7 increases for both original data and the
data from the use of principal components(see table 2). At this point of view, it might be
verified that (c;;cpc3)=(1;1;1) is the more informative case and (c;; ¢y c3) =(1;0;0) is the
less informative case for the original set of data generated since the recovery is degraded
with the inclusion of unnecessary variables. On our primary study, standardizations on the
data with the less informative variables were performed, however, a little improvement on the
recovery was found in the use of principal component analysis prior to cluster analysis. This
implies that the use of principal component analysis prior to applying agglomerative clustering
algorithms is appropriate for data with informative variables.

Based on the results in tables 1-2, the effect of informative variables on the ability of the

six agglomerative clustering algorithms is discussed. The C values show that, there is an
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essential difference between C(Y,Y) and C(Y,Y ) for the less informative case
(c15¢69¢3)=(1,0;0). The difference is due to the use of principal component analysis prior to

applying the agglomerative clustering algorithm. Using principal component analysis prior to
clustering algorithm gives a significant effect on ‘‘retrieval’’ ability. On the other hand, the
results for the agglomerative clustering algorithms with or without applying principal
component analysis show essentially no differences for the case, (cy;c¢yc¢3)=(1;1;1), which

are considered to be more informative.

Table 1. The C(Y,Y) and C(Y,Y") for (ci;c5c3)=1(10;0)

o 0.6 09
Data )
(B, ®/n | 00 0.2 0.4 00 | 02 | 04
(0.0, -0.5) 3478 | 3471 | 3483 | .3483 | .3481 | .3478
0.0, 0.0) 4824 | 4945 | 4856 | 4959 | .4919 | 4915
20 (0.0, 0.5 5331 | 5381 | 5332 | 5336 | .5328 | 5292
(-0.25, 0.0) | 5517 | 5549 | 5448 | 5585 | .5543 | 5495
(0.5, 0.0) 5661 | B679 | 5683 | 5705 | 5615 | 5627
. (<05, 0.75) | 5718 | 5693 | 5711 | 5682 | 5649 | .5614
Original
(0.0, -0.5) 3772 | 3756 | 4058 | 6386 | .5946 | 5676
0.0, 0.0) 6822 | 6991 | 6749 | 6746 | 6353 | 6149
40 (0.0, 0.5 7001 | 6913 | .6417 | 6265 | .6186 | 5961
(-0.25, 0.0) | 9175 | 8616 | .7810 | .9274 | .8643 | .7705
(-0.5, 0.0) 9346 | 8839 | .8138 | .9227 | .8731 | .7895
(0.5, 0.75) | .8446 | 7927 | .7650 | .7986 | .7484 | .7056
(0.0, -0.5) 3486 | 3498 | .3496 | .3476 | .3494 | .3509
(0.0, 0.0) 4798 | 4971 | 4866 | .4892 | .4869 | .4968
20 (0.0, 0.5) 5242 | 5208 | 5276 | 5307 | .5300 | .5266
(-0.25, 0.0) | 5467 | 5492 | 5428 | 5489 | 5428 | 5469
(-0.5, 0.0) 55659 | BB72 | 5597 | 5535 | 5508 | .5529
PCA (-05, 0.75) | 5550 | 5565 | 5648 | 5567 | .5H38 | .5503
(0.0, -0.5) 3677 | 3744 | 4165 | 3965 | .3881 | .4022
0.0, 0.0) 6086 | 6297 | 6304 | 5763 | 5604 | 5586
40 (0.0, 0.5 6456 | 6493 | 6366 | 5856 | 5886 | .5888
(-0.25, 0.0) | .7476 | 7301 | 7443 | 6716 | 6739 | .6733
(-0.5, 0.0) 7550 | 7475 | 7626 | 6895 | 6824 | 6774
(=05, 0.75) | .7371 | 7199 | 7432 | .6598 | .6634 | .6645
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The loss of information in using only those principal components with relatively large
eigenvalues may not be a loss in fact, but the elimination of less informative components, as
shown in table 2 compared to table 1. Large loss is found in the case of the least informative,
(1;0;0), while small loss is shown in the case of the most informative, (1;1;1), with large

differences among mean vectors( 6=4.0). The use of principal component analysis prior to
applying the clustering algorithm is desirable when variables are more informative, since
possibilities of getting high recovery increase as the number of informative variables
increases(table 2).

Under the design described previously, more similar clusterings are retrieved than applying
agglomerative clustering algorithms alone when principal component analysis is applied prior
to using clustering algorithms. If many unnecessary variables are included in applying

Table 2. The C(Y,Y) and C(Y,Y ) for (cp;cpc3)=(1;1;1)

o 06 0.9

Data 0= /71 00 oz | 04 | 00 | 02 | 04
(0.0, -05) | .3475 | 3471 | 34%6 | 3478 | 3486 | 3477

(00, 00) | 4792 | 4736 | 4950 | 4983 | 4856 | 4914

5o |00, 05) | 5321 | 5325 | 5286 | 5353 | 5396 | 5363
(-0.25, 0.0) | 5559 | 5556 | 5547 | 5515 | 5541 | 5453

(05, 0.0) | 5662 | 5662 | 5725 | 5678 | 5625 | 5614

Original (-05, 0.75) | 5698 | 5702 | 5713 | 5698 | 5690 | 5697
(0.0, -05) | 4164 | 3646 | 3769 | 7177 | 4210 | .3645

00, 00) | 7909 | 7250 | 6992 | 6771 | 6201 | 5944

10| _©0.05) | 7676 | 6858 | 6697 | 6295 | 6302 [ 6062

~ [ (-0.25, 0.0) | 9519 | 8991 | 8017 | 9165 | 8303 | 7504

(-05, 0.0) | 9580 | 9162 | .8440 | 9272 | 8629 | .7846

(-05, 0.75) | .8940 | 8364 | .8055 | .8003 | 7596 | 7152

(0.0, -05) | .3488 | 3499 | 3511 | 3482 | 3494 | .3505

(0.0, 0.0) | 4922 | 4865 | 5158 | 4877 | 4986 | .4989

b | (00,05 | 529 | 5274 | 5532 | 5283 | 5326 | 5092
(-0.25, 0.0) | 5539 | 5496 | 5566 | 5485 | 544l | 5447

(05, 0.0) | 5572 | 5604 | 5698 | 5541 | 5530 | 5558

A (~05, 0.75) | 5578 | 5605 | 5717 | 5514 | 5519 | 5547
(0.0, -05) | 6564 | 5440 | 5606 | 5204 | 4901 | .4406

(00, 00) | .8044 | 7103 | 6790 | 6802 | 6389 | 6203

10|00, 05) | 7787 | 6926 | 6636 | 6604 | 6481 | 6407
~1(-025, 0.0 ) | .9401 | 8872 | .8029 | .8345 | 7936 | .7547

(-05, 00) | 9540 | 9202 | 8419 | 8386 | .8324 | 7767

(-05, 0.75) | 9188 | 8797 | 7967 | 7985 | 1872 | 71694
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principal component analysis, the clusterings generated by clustering algorithms with principal
components are more damaged than other cases, as mentioned by Fowlkes, Gnanadesikan and
Kettenring (1988). However, applying principal component analysis before using clustering
algorithm is not worse than applying clustering algorithm alone in this study, if the variables
are considered to be informative and the loss of information in dimensional reduction by
principal components is considered.

5. Application to Real Data

An application using a set of data that includes yeast (Saccharomyces cerevisiae) genes by
Spellman et al.(1998). The primary data set might be obtained at
http.//cellcycle-www.stanford.edu. In their normalization procedure on the primary data, a total
of 800 yeast genes are identified as being periodically regulated and meet an objective
minimum criterion for cell cycle regulation.

For convenience, 630 observations with 24 variables(i. e., the results of a series of
timepoints in the experiments) are taken out of identified 800 genes that have no missing
values on the data set with five(somewhat arbitrary) clusters. These clusters approximate the
commonly used cell groups in the literature.

For each of genes, the sizes of clusters which it belongs are (102-159-82-231-56) for S/G2,
G2/M, M/G1, G1 and S, according to Spellman et al.(1998) and the set of identified genes may
provide a natural basis for organizing yeast gene expression data. Then the clusters are
identified by the six agglomerative clustering algorithms alone and by using principal
component analysis prior to agglomerative clustering algorithms where the squared Euclidean
distance is used as a similarity measure between objects. In fact, the use of Pearson's
correlation coefficient as a similarity measure between objects might be considered with the
average linkage-(0.0, 0.0) applied by Spellman et. al,(1998), however, only the squared
Euclidean distance is used with respect to the use of principal component analysis prior to
cluster analysis in this study.

As shown in table 3, the recovery of true cluster is increased or decreased by using
principal components depending on the number of principal components and the choice of
agglomerative clustering algorithm.
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Table 3. The sizes of clusters and C values for Spellman’s data(1998)
Group S/G2 G2/ M M/Gl Gl S C

Data *
(B, m\Sizes| 102 159 82 231 56 |values
(0.0, -0.5) 1 2 1 625 1] .2552 232
0.0, 0.0) 2 362 5 258 3 | 6561 359
Original (0.0, 0.5) 143 129 28 326 4 1 7178 409
(p=24) (-0.25, 0.0) 37 186 46 287 74 | 7036 341

(-0.5, 0.0) 100 157 82 271 20| .7248 | 369
(-0.5, 0.75) 210 146 57 112 105 | 7133 | 296

(0.0, -0.5) 1 2 1 625 1| .2557 | 233

PCA (0.0, 0.0) 15 2 78 532 3| 3845 | 184

(a=4) (0.0, 0.5) 3 257 12 206 152 | 7023 | 308

a (-0.25, 0.0) 118 175 124 183 30 | .7548 | 359
(76.6%)

(-0.5, 0.0) 52 185 92 254 47 | 7183 | 360

(-0.5, 0.75) 110 176 162 135 47 | 7583 | 368

(0.0, -0.5) 1 2 1 625 1] .2567 | 233

PCA (0.0, 0.0) 1 47 49 106 3| 4666 | 260

(a=5) (0.0, 0.5) 201 176 15 234 4| .7398 | 392

a (-0.25, 0.0) 169 196 66 149 50 | .7424 | 355
(80.8%)

(-0.5, 0.0) 52 182 123 212 61 | 7212 | 310

(-0.5, 0.75) 144 96 74 247 69 | 7887 | 390

*. number of objects which are assigned to the '‘identified” clusters defined by
Spellman et al.(1998)

As a result, the use of flexible strategy, (-.25, 0.0), and the recommendation of DuBien and
Warde(1981), (0.5, 0.75) might be recommended instead of wusing the other Cclustering
algorithms if reduction of variables(i.e.,, genes are synchronized in series of timepoints in the
experiment) is considered. In the concept of Rand's(1971) C statistic which is the measure
of similarity between clusterings, the application of those two agglomerative clustering
algorithms recovers well the arbitrary divided clusters that each of genes belongs to on the
cell cycle data from Spellman et al.(1998) if the clusters formed by clustering algorithms are

meaningful.
6. Concluding Remarks
In this study, the use of principal component analysis prior to cluster analysis has been

investigated. The retrieval abilities of agglomerative clustering algorithms were increased if
the number of informative variables were increased. Moreover, the retrieval ability of the
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known clustering is improved in some situations by using principal components prior to
cluster analysis.

On the other hand, the recovery of clusterings generated by agglomerative clustering
algorithms with principal components were greatly degraded if many unnecessary variables
were included in applying principal component analysis. However, applying principal component
analysis prior to using clustering algorithm were not worse than applying clustering algorithm
alone if the variables were considered to be informative and the loss of information on
reducing the number of variables is considered. The loss in retrieval ability for the six
agglomerative clustering algorithms decreases, as the number of informative variables
increases.

According to the results from the cell cycle data of Spellman et al.(1998), it is found that
the recovery of true cluster(in fact, somewhat arbitrary divided) is generally increased or
rarely decreased by using principal components prior to cluster analysis. The results depend
on the number of principal components that is related to the structures of variables and the
choice of agglomerative clustering algorithm. Based on Rand's(1971) C, the recovery of
known clustering was improved in the use of (-0.5, 0.75), the recommendation of DuBien and
Warde(1981) and flexible strategy, (-.25, 0.0), if reduction of the variables(i.e., reduction of
timepoints in the experiments) were considered on the cell cycle data from Spellman et
al.(1998). In specific, the retrieval ability of other clustering algorithms except for the single
linkage is better than the result from using the average linkage-(0.0, 0.0).

Therefore, it might be appropriate to reduce the number of variables into informative
variables by applying principal component analysis before performing cluster analysis on a
data sample with a large number of variables if the characteristics of the data were critically
examined and the clusters generated by clustering algorithms are meaningful. The choice of
agglomerative clustering algorithm and the number of principal components should be
considered depending on the structure of data treated since the clusters formed by clustering
algorithms are data dependent.
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