• Title/Summary/Keyword: cloud security scheme

Search Result 129, Processing Time 0.041 seconds

OpenID Based User Authentication Scheme for Multi-clouds Environment (멀티 클라우드 환경을 위한 OpenID 기반의 사용자 인증 기법)

  • Wi, Yukyeong;Kwak, Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.215-223
    • /
    • 2013
  • As cloud computing is activated, a variety of cloud services are being distributed. However, to use each different cloud service, you must perform a individual user authentication process to service. Therefore, not only the procedure is cumbersome but also due to repeated authentication process performance, it can cause password exposure or database overload that needs to have user's authentication information each cloud server. Moreover, there is high probability of security problem that being occurred by phishing attacks that result from different authentication schemes and input scheme for each service. Thus, when you want to use a variety of cloud service, we proposed OpenID based user authentication scheme that can be applied to a multi-cloud environment by the trusted user's verify ID provider.

Secure and Scalable Key Aggregation Scheme for Cloud Storage

  • Park, YoHan;Park, YoungHo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.11-18
    • /
    • 2015
  • As the communication technology and mobile devices develop, the need for the efficient and secure remote storage is required. And recently, many companies support cloud storages to meet the requirements of the customers. Especially in the business field where various companies collaborate, data sharing is an essential functionality to enhance their work performance. However, existing researches have not fully satisfied the requirement either efficiency and security. This paper suggests efficient and secure data sharing scheme for cloud storage by using secret sharing scheme. Proposed scheme can be applied to business collaborations and team projects.

Verifiable Could-Based Personal Health Record with Recovery Functionality Using Zero-Knowledge Proof (영지식 증명을 활용한 복원 기능을 가진 검증 가능한 클라우드 기반의 개인 건강기록)

  • Kim, Hunki;Kim, Jonghyun;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.999-1012
    • /
    • 2020
  • As the utilize of personal health records increases in recent years, research on cryptographic protocol for protecting personal information of personal health records has been actively conducted. Currently, personal health records are commonly encrypted and outsourced to the cloud. However, this method is limited in verifying the integrity of personal health records, and there is a problem with poor data availability because it is essential to use it in decryption. To solve this problem, this paper proposes a verifiable cloud-based personal health record management scheme using Redactable signature scheme and zero-knowledge proof. Verifiable cloud-based personal health record management scheme can be used to verify the integrity of the original document while preserving privacy by deleting sensitive information by using Redactable signature scheme, and to verify that the redacted document has not been deleted or modified except for the deleted part of the original document by using the zero-knowledge proof. In addition, it is designed to increase the availability of data than the existing management schemes by designing to recover deleted parts only when necessary through the Redact Recovery Authority. And we propose a verifiable cloud-based personal health record management model using the proposed scheme, and analysed its efficiency by implementing the proposed scheme.

An improved Multi-server Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Irshad, Azeem;Sher, Muhammad;Ahmad, Hafiz Farooq;Alzahrani, Bander A.;Chaudhry, Shehzad Ashraf;Kumar, Rahul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5529-5552
    • /
    • 2016
  • Mobile cloud computing (MCC) has revolutionized the way in which the services can be obtained from the cloud service providers. Manifold increase in the number of mobile devices and subscribers in MCC has further enhanced the need of an efficient and robust authentication solution. Earlier, the subscribers could get cloud-computing services from the cloud service providers only after having consulted the trusted third party. Recently, Tsai and Lo has proposed a multi-server authenticated key agreement solution for MCC based on bilinear pairing, to eliminate the trusted third party for mutual authentication. The scheme has been novel as far as the minimization of trusted party involvement in authenticating the user and service provider, is concerned. However, the Tsai and Lo scheme has been found vulnerable to server spoofing attack (misrepresentation attack), de-synchronization attack and denial-of-service attack, which renders the scheme unsuitable for practical deployment in different wireless mobile access networks. Therefore, we have proposed an improved model based on bilinear pairing, countering the identified threats posed to Tsai and Lo scheme. Besides, the proposed work also demonstrates performance evaluation and formal security analysis.

Multi-session authentication scheme for secure authentication and session management of cloud services environment (클라우드 서비스 환경의 안전한 인증과 보안세션 관리를 위한 다중세션 인증 기법)

  • Choi, Do-hyeon;Park, Jung-oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2056-2063
    • /
    • 2015
  • Recently, as the service scale of cloud service is expanded, an anxiety due to concerns on new vulnerabilities and security related incidents and accidents are also increasing. This paper proposes a certification scheme for multiple session management of security sessions which are generated after the user authentication. The proposed session multiplexing scheme enables the independent management of security sessions in the level of virtualization (hypervisor) within the service provider. As a result of performance analysis, providing a strong safety due to session multiplexing and mutual authentication, and the superiority of performance was proven by comparing it with the existing mutual authentication encryption algorithms.

Reducing Cybersecurity Risks in Cloud Computing Using A Distributed Key Mechanism

  • Altowaijri, Saleh M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.

A Survey of Homomorphic Encryption for Outsourced Big Data Computation

  • Fun, Tan Soo;Samsudin, Azman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3826-3851
    • /
    • 2016
  • With traditional data storage solutions becoming too expensive and cumbersome to support Big Data processing, enterprises are now starting to outsource their data requirements to third parties, such as cloud service providers. However, this outsourced initiative introduces a number of security and privacy concerns. In this paper, homomorphic encryption is suggested as a mechanism to protect the confidentiality and privacy of outsourced data, while at the same time allowing third parties to perform computation on encrypted data. This paper also discusses the challenges of Big Data processing protection and highlights its differences from traditional data protection. Existing works on homomorphic encryption are technically reviewed and compared in terms of their encryption scheme, homomorphism classification, algorithm design, noise management, and security assumption. Finally, this paper discusses the current implementation, challenges, and future direction towards a practical homomorphic encryption scheme for securing outsourced Big Data computation.

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

Secure and Efficient Conjunctive Keyword Search Scheme without Secure Channel

  • Wang, Jianhua;Zhao, Zhiyuan;Sun, Lei;Zhu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2718-2731
    • /
    • 2019
  • Conjunctive keyword search encryption is an important technique for protecting sensitive data that is outsourced to cloud servers. However, the process of searching outsourced data may facilitate the leakage of sensitive data. Thus, an efficient data search approach with high security is critical. To solve this problem, an efficient conjunctive keyword search scheme based on ciphertext-policy attribute-based encryption is proposed for cloud storage environment. This paper proposes an efficient mechanism for removing the secure channel and resisting off-line keyword-guessing attacks. The storage overhead and the computational complexity are regardless of the number of keywords. This scheme is proved adaptively secure based on the decisional bilinear Diffie-Hellman assumption in the standard model. Finally, the results of theoretical analysis and experimental simulation show that the proposed scheme has advantages in security, storage overhead and efficiency, and it is more suitable for practical applications.

An Efficient and Secure Data Storage Scheme using ECC in Cloud Computing (클라우드 컴퓨팅에서 ECC 암호를 적용한 안전한 데이터 스토리지 스킴)

  • Yin, XiaoChun;Thiranant, Non;Lee, HoonJae
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.49-58
    • /
    • 2014
  • With the fast development of internet, cloud computing has become the most demanded technology used all over the world. Cloud computing facilitates its consumers by providing virtual resources via internet. One of the prominent services offered in cloud computing is cloud storage. The rapid growth of cloud computing also increases severe security concerns to cloud storage. In this paper, we propose a scheme which allows users not only securely store and access data in the cloud, but also share data with multiple users in a secured way via unsecured internet. We use ECC for cryptography and authentication operation which makes the scheme work in a more efficient way.