
Journal of the Korea Industrial Information Systems Research Vol. 20 No.2, Apr. 2015 :11-18

http://dx.doi.org./10.9723/jksiis.2015.20.2.011 ISSN:1229-3741

- 11 -

Secure and Scalable Key Aggregation

Scheme for Cloud Storage 

YoHan Park1) and YoungHo Park2)*

Abstract As the communication technology and mobile devices develop, the need for the
efficient and secure remote storage is required. And recently, many companies support cloud
storages to meet the requirements of the customers. Especially in the business field where
various companies collaborate, data sharing is an essential functionality to enhance their
work performance. However, existing researches have not fully satisfied the requirement
either efficiency and security. This paper suggests efficient and secure data sharing scheme
for cloud storage by using secret sharing scheme. Proposed scheme can be applied to
business collaborations and team projects.

Key Words : Cloud Storage, Data Sharing, Key Aggregation

1. Introduction

Cloud computing is a promising technology for

the next generation of IT enterprises. The

advantages of this technology, such as convenient

remote data access and usable on-demand

application services, are very profitable commercial

items to both IT companies and their customers.

As the lucrative technologies are focused on

mobile devices, the importance of cloud computing

technology also is growing up rapidly. Especially

cloud storage (CS) has many advantages in

finance. Virtual storage in the cloud is cheaper and

more efficient than the hard drive connected to the

personal computer. So that, many communication

companies are operating the CS, for example,

Apple runs iCloud and Google operates Google

* Corresponding Author

Manuscript received November 3, 2014 / Revised December

30, 2014 / Accepted February 25, 2015

1) Kyungpook National University, Department of Electronics

Engineering, Lecturer, 1st Author

2) Kyungpook National University, School of Electronics Engineering,

Professor, Corresponding Author (parkyh@knu.ac.kr)

Drive.

However many unsolved security problems in

CS restrict the extension of cloud technology to

various IT areas. The basic security problem is

originated by the remote place to store user's data.

Outsourced storages are vulnerable to attackers

and even to service providers. Therefore, the data

stored in the CS should be essentially encrypted

before storing [1-2]. But as the data are encrypted,

the CS is limited in scalability and efficiency.

Moreover computation load is increased as well.

Thus a service provider needs to consider both

security and efficiency when designing CS.

Recently, data sharing is considered as one of

the important function in CS[3-4]. For example,

when members of a team which is organized in

collaboration with different companies work

together, they need to share their works. But they

cannot meet frequently for restrictions. In this

case, data sharing method using CS can be an

excellent solution. Thus data sharing should be

equipped in CS.

But because of limited computing and



Secure and Scalable Key Aggregation Scheme for Cloud Storage

- 12 -

energy-constrained devices, symmetric encryption

techniques are applied to CS generally[5-6]. It

means data-owners, who upload their data to CS,

have to use different keys whenever they upload

or verify data. It makes users share data

inefficiently. Because data-owner have to give each

different key to the other party when he or she

requests data. C-K Chu et. al [4] used pairing

cryptosystem to share data. Even though, their

scheme provides data sharing, computation load is

high because they used paring operation.

This paper suggests efficient and secure data

sharing method in CS using the secret sharing

scheme. We do not use paring operations

considering mobile devices limited computing

ability. The scheme helps to share less key than

sharing every key when others want several data

concurrently.

The rest of the paper is organized as follows. In

Section 2, we survey the related works. Next we

present secure and scalable key aggregation

scheme in CS in Section 3, followed by a analysis

in Section 4. The paper is finally concluded in

Section 5.

2. Preliminaries

In this section, we introduce the framework for

key-aggregate encryption which we focus on.

Then we present a scenario of the application

using key-aggregate encryption, the cryptographic

system and notations used as building blocks.

2.1 Framework

A key-aggregate encryption scheme first

introduced by C.-K. Chu et al. [4]. In this paper,

we follow their process but slightly revise the

contents in the framework.

- Setup: Data owner executes the Setup

function to get a   degree polynomial

 . On input security level parameter  , it

outputs public system parameter

    and hash function  (where

     and  ≪ ).

- KeyGen: Data owner executes the KeyGen

function to get a secret key   

(where    ).

- Encrypt: Data owner executes the

Encrypt function to encrypt data . It

outputs a ciphertext  .

- Extract: Data owner executes the Extract

function to devise an aggregated key. It

outputs a class  and extra points  and a

secret point       .

- Decrypt : Data receiver executes the

Decrypt function to compute original data

from encrypted data. On input a class , a

secret point  , and encrypted data  , it

outputs the decrypted data .

2.2 Scenario

In this paper, we consider data sharing model in

CS. We refer and use the Fig. 1 used at [4]. Two

users who are working different companies are

team members of same project, thus they want to

share their works using cloud system.

Fig. 1 Data Sharing Scenario using Key

Aggregation Scheme[4].



Journal of the Korea Industrial Information Systems Research Vol. 20 No.2, Apr. 2015 :11-18

- 13 -

We assume that Alice tries to send 4 data

numbered by 2,3,6,8 among 8 data which are

stored in CS to Bob. First, Alice encrypts 8 data

using 8 different keys. and then uploads those to

CS. Next, she sends 4 different keys to Bob using

secure channel such as e-mail (the size of key is

short enough to send using e-mail because the

system uses symmetric cryptosystem). After

receiving 4 different keys, Bob downloads 4 data

from the CS, then decrypts using 4 different keys

received using e-mail. Now Bob can check

messages 2,3,6,8.

If the cloud system supports key aggregation

scheme, Alice only sends one aggregated key

which can decrypt 4 encrypted data rather than

sending 4 keys. Likewise, our scheme provides

efficient and secure key aggregate method, so that

users are no need to send every keys what others

want to decrypt.

2.3 Secret Sharing Scheme

Secret sharing schemes were independently

introduced by the Blakley and the Shamir [7] in

1979. They introduced a way to split a secret K

into n shares. And only t or more than t shares

among n can reconstruct a secret K. It is called

(t,n)-secret sharing, denoted as (t,n)-SS.

Shamir's (t,n)-SS. Shamir's (t,n)-SS is based

on polynomial interpolation. The scheme consists of

two algorithms:

① Secret Sharing Generation : A trusted party

T distributes shares of a secret K to n users

as follow:

∙ T chooses a prime p > max(K,n), and defines

   .

∙ T picks a polynomial  of degree (t-1)

randomly:    ⋯   
   , in

which the secret      and all

coefficients     are in a finite field

   with p elements.

∙ T computes    (mod p) for i=1,...,n.

and securely transfer the shares  to each

user.

② Secret Reconstruction : Any group of size t

or more than t can reconstruct the polynomial

 as

 ∑∈ (mod q),

, where   ⊆ ,

  ∏∈╲  

  
is called a Lagrange

coefficient. The secret is recovered by

   .

For more information on this scheme, readers can

refer to the original paper [7].

3. Key Aggregation Scheme for Cloud Storage

This section presents a key aggregation scheme

for CS. We describe the basic construction (for

one message) in Section 3.1 Next, we extend it to

general form (up to N messages) in Section 3.2

and show a example of our scheme in Section 3.3.

Table 1 lists some important notations whose

concrete meanings will be further explained.

3.1 Basic Construction

We assume Alice shares one message to Bob.

Alice can encrypt at most (n-t-1) messages. If she

encrypt more than (n-t-1) messages, adversaries

who got (n-t) key points can recover the master

polynomial f(x).



Secure and Scalable Key Aggregation Scheme for Cloud Storage

- 14 -

 large prime

 master polynomial of degree   for a sender

  slave polynomial of degree    for a single key

  slave polynomial of degree    for an aggregated key

  points passing through 

  the point  

 the subset of  , called the class

 digital signature of message  generated by entity A

 
 

 Encryption/Decryption of 

  hash function, mapping 
→ , where  is length of key

Table 1 Notations

- Setup

∙ Alice generates a (n-1) degree polynomial f(x)

as a master polynomial:

   ⋯  
   .

∙ Alice chooses and publishes random t points

which pass through the polynomial f(x) as

public parameters. Let    ,

where     and  ≪ .

∙ Alice chooses hash function  and publishes

it.

- KeyGen

∙ Alice chooses a random ∈
 and computes

a  :     and     .

∙ Let 
   be a key point.

- Encrypt

∙ Alice chooses a message  and encrypts

using      
 

∙ Alice stores a ciphertext     to the

CS.

- Extract

∙ Alice chooses random    points among

 , where      . A set of   

points is indexed by the class  . Then Alice

publishes the class  as the corresponding

class of the message  .

∙ Alice generates the    degree polynomial

      ⋯   
   .   is

composed of    points indexed by the

class  and the key point 
.

∙ Alice computes     .

∙ Alice chooses one secret point     

passing through   randomly, and sends

  to Bob securely.

- Decrypt

∙ Bob reconstructs the polynomial 
′  using

   points which are indexed by the 

and the secret point  received from Alice.

∙ Bob checks the validity of the polynomial


′  :  

′    . If this is incorrect,

stop processing. If this is correct, then Bob

computes 
′  

′   and 
′   

′ 
∙ Bob decrypts a message    

′  

(Alice can compute  easily without

reconstructing   by using her master

polynomial     .

3.2 Extension to N messages

We assume Alice encrypts and stores M

messages. And then Alice sends N out of M

messages to Bob.



Journal of the Korea Industrial Information Systems Research Vol. 20 No.2, Apr. 2015 :11-18

- 15 -

- Setup

Same as above.

- KeyGen

∙ Alice chooses random ∈
 and computes

 :     and     , where

    .

∙ Let 
   be key points.

- Encrypt

∙ Alice chooses messages  and encrypts

using  :    
 .

∙ Alice stores ciphertexts     to the

CS.

- Extract

∙ Alice chooses random   points among

 , where    ≤  ≤  . A set of

  point is indexed by the class  .

Then Alice publishes the class  as the

corresponding class of messages  .

∙ Alice generates the    degree

polynomial       ⋯ 
  

.

  is composed of   points

indexed by the  and key points 
.

∙ Alice chooses arbitrary extra N points,

 
 

 , passing through   .

Then, Alice sets one point among extra N

points as the secret point     .

Then Alice publishes other    points by

indexing  , i.e.  ∉ .

∙ Alice computes     .

∙ Alice sends    to Bob

securely.

- Decrypt

∙ Bob reconstructs the polynomial 
′  using

  points indexed by  ,   points

indexed by  , and the secret point 

∙ Bob checks the validity of the polynomial


′  :  

′    . If it is incorrect,

stop processing. If this is correct, then Bob

computes 
′  

′   and 
′   

′ .
∙ Bob decrypts messages   

′   (Alice

can compute  easily without reconstructing

  by using her master polynomial

    )

3.3 An Example of the Proposed Scheme

We assume Alice wants to share 3 data to Bob

among 6 data in the CS. Let   be total

messages,    be sharing messages,    be

the number of public parameters,    be the

degree of the master polynomial, and    be

the degree of the slave polynomial. Among 6

messages, Alice wants to send  .

- Setup

∙ Alice generates 9 degree master polynomial

 :     ⋯ 


∙ Alice publishes 5 public parameters passing

through the polynomial  . Let

  , where    

- KeyGen

∙ Alice chooses 5 random numbers,   and

computes   , where     .

∙ Alice generates 6 keys, 
 

to encrypt

messages. Let 
   be a point of key.

- Encrypt

∙ Alice encrypts 6 messages,   , using 6

keys generated the previous step. Let

  
    

  be

ciphertexts   , where    .

∙ Alice stores 6 ciphertexts to the CS.

- Extract

∙ Alice chooses random 3 points among  . To

simplify, we selects  among
 and

indexes  and publishes those as the

corresponding class of  .



Secure and Scalable Key Aggregation Scheme for Cloud Storage

- 16 -

Fig. 2 The Proposed Key-Aggregation Scheme.

∙ Alice generates 5 degree polynomial  

using the class  (3 points) and 



.

∙ Alice chooses 3 other extra points passing

through   . Among 3 extra points, set 1

point as the secret key  . Then Alice

publishes other 2 points, 


.

∙ Alice sends  to Bob secretly using

e-mail.

- Decrypt

∙ Bob reconstructs 
′  using the class  and

2 extra points 


, and secret key  .

∙ Bob checks the validity of the reconstructed

polynomial 
′  by comparing

 
′    .

∙ Bob computes    
′   ,

   
′   ,    

′   .
∙ Bob gets ciphertexts  for the CS

and decrypts the messages using  .

Fig. 2 shows the overview of our proposed

scheme.

4. Analysis

We analyze the security in Section 4.1 and

performance in Section 4.2.

4.1 Security

We use the secret sharing scheme to share data

efficiently and securely. Our scheme is theoretically

secure if adversaries have no more than  

points or   . Because they cannot

reconstruct the master and slave polynomials with

the information that they have.

- Cloud Service Provider (CSP)

CSP is also a promising attacker[3]. To provide

the privacy of user's data, data should be encrypted



Journal of the Korea Industrial Information Systems Research Vol. 20 No.2, Apr. 2015 :11-18

- 17 -

before storing at CS. To attack and decrypt the

data, CSP has to know each secret key or

aggregated key or have enough information to

reconstruct the master and slave polynomials.

However, each key 
encrypting each data is not

disclosed during the communication. And though

CSP can have    key points which are passing

through   , it cannot get a secret key 

which is passing through a secure channel to

another user. So that CSP cannot know any

information of the data.

- User

Users who get a secret key  have more

information than the CSP. However this secret key

is only valid on the requested data. And the points

which were used to construct   is

independent to other slave polynomials which are

going to be made for other aggregated keys. So

that using this secret key  , the users cannot

decrypt other encrypted data stored in CS.

4.2 Performance

We compare our scheme with [4]. C.-K. Chu et

al. designed the scheme based on tree structure.

They classified data depend on certain criteria.

They called it as a class. Same class means the

data are branches of a mother point. If a receiver

requests data in a same class, the performance is

nice, unless computation load is high. Therefore,

the performance of [4] is dependent on the class

However, our scheme does not consider class.

Thus the performance is independent on the class

and constant.

Table 2 shows computation load of each scheme.

For simplicity, we only consider the decryption

part, because service providers support encryption

and secret distribution, users are no need to

consider these computation loads.

[4]
Proposed

Scheme

structure tree-based independent

Decryption load

(Simplied Form)
  

 : pairing operation,  : scalar multiplication,

 : symmetric encryption

Table 2 Comparison of Computation Load

[4] used pairing operations to encrypt and

decrypt data. The pairing operation generally

consume heavy computation loads rather than

scalar multiplications. Cao et al. [8] showed a

pairing consumes about double computation load

with those of an exponentiation and three times

computation load with those of scalar multiplication

in  . Our scheme used only scalar multiplications

and encryption scheme. We can use any secure

and simple symmetric encryption method based on

application areas. According to this comparison,

our scheme is lighter than [4] and flexible in

terms of structures.

5. Conclusion

Protecting users's privacy and data are important

requirements to use CS in business fields. And

recently, efficient and secure data sharing method

also is required in cooperated work for enhancing

work performance.

We suggested a secure and efficient data

sharing scheme in cloud storage. To share the

date efficiently, we suggested key aggregation

scheme. Data-owner is no need to send every

corresponding symmetric keys although receivers

request several data. Instead, data-owner generates

one aggregated key which is related to requested

data. Then receivers can decrypt several encrypted

data stored in CS using this aggregated key. The

aggregated key is sent through a secure channel



Secure and Scalable Key Aggregation Scheme for Cloud Storage

- 18 -

from the data-owner to the receiver who requests

data, so that CSP and other users cannot get

enough information to decrypt data.

Compared to previous works, we do not arrange

data in a hierarchy to make a aggregated key, but

we select and generate a slave polynomial. Thus

our scheme is flexible than hierarchical key

aggregation scheme and the performance is

independent on tree structures. Thus proposed

scheme is suitable for business fields or group

projects.

References

[1] S. S. M. Chow, Y. J. He, L. C. K. Hui, and

S.-M. Yiu, "SPICE-Simple Privacy-Preserving

Identity-Management for Cloud Environment,"

ACNS 2012, LNCS 7341, pp. 526-543, 2012.

[2] U. Somani, K. Lakhani, and M. Mundra,

"Digital Signature with RSA Encryption

Algorithm to Enhance the Data Security of

Cloud in Cloud Computing," 2010 1st

International Conference on Parallel, Distributed

and Grid Computing, pp. 211-216, 2012.

[3] G. Zhaio, C. Rong, J. Li, F. Zhang, and Y.

Tang, "Trusted Data Sharing over Untrusted

Cloud Storage Providers," IEEE International

Conference on Cloud Computing Technology

and Science, pp. 97-103, 2010

[4] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J.

Zhou, and R. H. Deng, "Key-Aggregate

Cryptosystem for Scalable Data Sharing in

Cloud Storage," IEEE Transactions on Parallel

and Distributed Systems, Vol 25, No.2, pp.

468-477, 2014.

[5] S. Kamara and K. Lauater, "Cryptographic

Cloud Storage," Financial Cryptography and

Data Security 2010, LNCS 6054, pp. 136-149,

2010.

[6] L. Arockiam1 and S. Monikandan, "Data

Security and Privacy in Cloud Storage using

Hybrid Symmetric Encryption Algorithm,"

International Journal of Advanced Research in

Computer and Communication Engineering, Vol

2, No.8, pp. 3064-3070, 2013.

[7] A. Shamir, "How to share a secret,"

Communications of the ACM, Vol 22, No.11,

pp. 612–613, 1979.

[8] X. Cao, W. Kou, and X. Du, “A pairing-free

identity-based authenticated key agreement

protocol with minimal message exchanges,”

Information Sciences, Vol. 180, No.15, pp. 2895

- 2903, 2010.

박 요 한 (YoHan Park)

∙정회원

∙2006년 2월: 경북대학교 전자전기

컴퓨터 학부 학사

∙2008년 2월: 경북대학교 전자공학과

석사

∙2008년 3월∼2013년 2월: 경북대학교 전자전기컴퓨

터 학부 박사

∙2013년∼2014년: National University of Singapore

박사후연구원

∙2014년∼현재: 경북대학교 산업전자공학과 시간강사

∙관심분야: 정보보호, 무선통신보안, 네트워크보안

박 영 호 (YoungHo Park)

∙종신회원

∙1989년 2월: 경북대학교 전자공학과

학사

∙1991년 2월: 경북대학교 전자공학과

석사

∙1995년 8월: 경북대학교 전자공학과 박사

∙1996년∼2008년: 상주대학교 전자전기공학부 교수

∙2003년∼2004년: Oregon State Univ. 방문교수

∙2008년∼2014년: 경북대학교 산업전자공학과 교수

∙2014년∼현재: 경북대학교 전자공학부 교수

∙관심분야: 정보보호, 네트워크보안, 모바일 컴퓨팅




