• Title/Summary/Keyword: cloud index

Search Result 178, Processing Time 0.026 seconds

A Study of the Establishment of BIM Design Environment based on Virtual Desktop Infrastructure(VDI) of Cloud Computing Technology (클라우드 컴퓨팅 기술을 활용한 데스크탑 가상화 기반의 BIM 설계 환경 구축에 관한 연구)

  • Shin, Joonghwan;Lee, Kyuhyup;Kwon, Soonwook;Choi, Gyuseong;Ko, Hyunglyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.118-128
    • /
    • 2015
  • Recently BIM technology has been expanded for using in construction project. Due to the high-cost of BIM infrastructure development, lack of regulations, lack of process and so forth, usage of BIM has been delayed than initial expectations. In design phase, especially, collaboration based on BIM system has been a key factor for successful next generation building project. Through the analysis of current research trends about IT technologies, virtualization and BIM service, data exchange such as drawings, 3D model, object data, properties using cloud computing and virtual server system is defined as a most successful solution. The purpose of this study is to enable the cloud computing BIM server to provide several main functions such as editing models, 3D model viewing and checking, mark-up and snapshot in high-performance quality by proper design of VDI system. Concurrent client connection performance is a main technical index of VDI. Through testing of test-bed server client, developed VDI system's multi-connect control is evaluated. Performance-test result of BIM server VDI effect to development direction of cloud computing BIM service for commercialization.

kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns (데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘)

  • Kim, Hyeong-Il;Kim, Hyeong-Jin;Shin, Youngsung;Chang, Jae-woo
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1437-1457
    • /
    • 2016
  • In outsourced databases, the cloud provides an authorized user with querying services on the outsourced database. However, sensitive data, such as financial or medical records, should be encrypted before being outsourced to the cloud. Meanwhile, k-Nearest Neighbor (kNN) query is the typical query type which is widely used in many fields and the result of the kNN query is closely related to the interest and preference of the user. Therefore, studies on secure kNN query processing algorithms that preserve both the data privacy and the query privacy have been proposed. However, existing algorithms either suffer from high computation cost or leak data access patterns because retrieved index nodes and query results are disclosed. To solve these problems, in this paper we propose a new kNN query processing algorithm on the encrypted database. Our algorithm preserves both data privacy and query privacy. It also hides data access patterns while supporting efficient query processing. To achieve this, we devise an encrypted index search scheme which can perform data filtering without revealing data access patterns. Through the performance analysis, we verify that our proposed algorithm shows better performance than the existing algorithms in terms of query processing times.

Vegetation Cover Type Mapping Over The Korean Peninsula Using Multitemporal AVHRR Data (시계열(時系列) AVHRR 위성자료(衛星資料)를 이용한 한반도 식생분포(植生分布) 구분(區分))

  • Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.441-449
    • /
    • 1994
  • The two reflective channels(red and near infrared spectrum) of advanced very high resolution radiometer(AVHRR) data were used to classify primary vegetation cover types in the Korean Peninsula. From the NOAA-11 satellite data archive of 1991, 27 daytime scenes of relatively minimum cloud coverage were obtained. After the initial radiometric calibration, normalized difference vegetation index(NDVI) was calculated for each of the 27 data sets. Four or five daily NDVI data were then overlaid for each of the six months starting from February to November and the maximum value of NDVI was retained for every pixel location to make a monthly composite. The six bands of monthly NDVI composite were nearly cloud free and used for the computer classification of vegetation cover. Based on the temporal signatures of different vegetation cover types, which were generated by an unsupervised block clustering algorithm, every pixel was classified into one of the six cover type categories. The classification result was evaluated by both qualitative interpretation and quantitative comparison with existing forest statistics. Considering frequent data acquisition, low data cost and volume, and large area coverage, it is believed that AVHRR data are effective for vegetation cover type mapping at regional scale.

  • PDF

Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring (농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1343-1356
    • /
    • 2022
  • Clouds or shadows are the most problematic when monitoring crops using optical satellite images. To reduce this effect, a composite algorithm was used to select the maximum Normalized Difference Vegetation Index (NDVI) for a certain period. This Maximum NDVI Composite (MNC) method reduces the influence of clouds, but since only the maximum NDVI value is used for a certain period, it is difficult to show the phenomenon immediately when the NDVI decreases. As a way to maintain the spectral information of crop as much as possible while minimizing the influence of clouds, a Score-Based Composite (SBC) algorithm was proposed, which is a method of selecting the most suitable pixels by defining various environmental factors and assigning scores to them when compositing. In this study, the Sentinel-2A/B Level 2A reflectance image and cloud, shadow, Aerosol Optical Thickness(AOT), obtainging date, sensor zenith angle provided as additional information were used for the SBC algorithm. As a result of applying the SBC algorithm with a 15-day and a monthly period for Dangjin rice fields and Taebaek highland cabbage fields in 2021, the 15-day period composited data showed faster detailed changes in NDVI than the monthly composited results, except for the rainy season affected by clouds. In certain images, a spatially heterogeneous part is seen due to partial date-by-date differences in the composited NDVI image, which is considered to be due to the inaccuracy of the cloud and shadow information used. In the future, we plan to improve the accuracy of input information and perform quantitative comparison with MNC-based composite algorithm.

Analysis of Crop Damage Caused by Natural Disasters in UAS Monitoring for Smart Farm (스마트 팜을 위한 UAS 모니터링의 자연재해 작물 피해 분석)

  • Kang, Joon Oh;Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.583-589
    • /
    • 2020
  • Recently, the utility of UAS (Unmanned Aerial System) for a smart farm using various sensors and ICT (Information & Communications Technology) is expected. In particular, it has proven its effectiveness as an outdoor crop monitoring method through various indices and is being studied in various fields. This study analyzes damage to crops caused by natural disasters and measures the damage area of rice plants. To this end, data is acquired using BG-NIR (Blue Green_Near Infrared Red) and RGB sensors, and image analysis and NDWI (Normalized Difference Water Index) index performed to review crop damage caused by in the rainy season. Also, point cloud data based on image analysis is generated, and damage is measured by comparing data before and after the typhoon through an inspection map. As a result of the study, the growth and rainy season damage of rice was examined through NDWI index analysis, and the damage area caused by typhoon was measured by analysis of the inspection map.

A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites (정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2013
  • The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.

Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Ye-Seong;Kim, Seong-Heon;Jeon, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Kim, Suk-Gu;Kim, Hyun-Jin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.148-159
    • /
    • 2018
  • Purpose: Unmanned air vehicle (UAV) remote sensing was applied to test various vegetation indices and make prediction models of protein content of rice for monitoring grain quality and proper management practice. Methods: Image acquisition was carried out by using NIR (Green, Red, NIR), RGB and RE (Blue, Green, Red-edge) camera mounted on UAV. Sampling was done synchronously at the geo-referenced points and GPS locations were recorded. Paddy samples were air-dried to 15% moisture content, and then dehulled and milled to 92% milling yield and measured the protein content by near-infrared spectroscopy. Results: Artificial neural network showed the better performance with $R^2$ (coefficient of determination) of 0.740, NSE (Nash-Sutcliffe model efficiency coefficient) of 0.733 and RMSE (root mean square error) of 0.187% considering all 54 samples than the models developed by PR (polynomial regression), SLR (simple linear regression), and PLSR (partial least square regression). PLSR calibration models showed almost similar result with PR as 0.663 ($R^2$) and 0.169% (RMSE) for cloud-free samples and 0.491 ($R^2$) and 0.217% (RMSE) for cloud-shadowed samples. However, the validation models performed poorly. This study revealed that there is a highly significant correlation between NDVI (normalized difference vegetation index) and protein content in rice. For the cloud-free samples, the SLR models showed $R^2=0.553$ and RMSE = 0.210%, and for cloud-shadowed samples showed 0.479 as $R^2$ and 0.225% as RMSE respectively. Conclusion: There is a significant correlation between spectral bands and grain protein content. Artificial neural networks have the strong advantages to fit the nonlinear problem when a sigmoid activation function is used in the hidden layer. Quantitatively, the neural network model obtained a higher precision result with a mean absolute relative error (MARE) of 2.18% and root mean square error (RMSE) of 0.187%.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

PHYSICAL CHARACTERISTICS OF CORONAL REGION DRIVING OUT THE INTERPLANETARY SHOCK (행성간 충격파 발생 코로나 영역의 물리적 특성)

  • Oh, Su-Yeon;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • Using the solar wind data of 2000 observed by ACE, We classified the interplanetary shock on basis of shock driver. We examined the physical properties of shock drivers such as the ratio of charge states(O7/O6) and thermal index$(I_{th})$. Most of 51 interplanetary shocks are driven by interplanetary coronal mass ejections(ICME; magnetic cloud and ejecta) and high speed streams. According to the test of temperature(O7/O6) and $I_{th}$, we found that ICMEs originated from region with hot source in corona.

The Characteristics and Predictability of Convective System Based on GOES-9 Observations during the Summer of 2004 over East Asia (정지기상위성의 밝기온도로 분석한 2004년 동아시아지역에서 발생한 여름철 대류 시스템의 특성과 그 예측 가능성)

  • Baek, Seon-Kyun;Choi, Young-Jean;Chung, Chu-Yong;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.225-234
    • /
    • 2006
  • Convective systems propagate eastward with a persistent pattern in the longitude-time space. The characteristic structure and fluctuation of convective system is helpful in determining its predictability. In this study, convective index (CI) was defined as a difference between GOES-9 window and water vapor channel brightness temperatures following Mosher (2001). Then the temporal-spatial scales and variational characteristics of the summer convective systems in the East Asia were analyzed. It is found that the average moving speed of the convective system is about 14 m/s which is much faster than the low pressure system in the summer. Their average duration is about 12 hours and the average length of the cloud streak is about 750km. These characteristics are consistent with results from other studies. Although the convective systems are forced by the synoptic system and are mostly developed in the eastern edge of the Tibetan Plateau, they have a persistent pattern, i.e., appearance of the maximum intensity of convective systems, as they approach the Korean Peninsula. The consistency of the convective systems, i.e., the eastward propagation, suggests that there exists an intrinsic predictability.