• 제목/요약/키워드: closed-loop identification

검색결과 74건 처리시간 0.025초

Nanoscale Dynamics, Stochastic Modeling, and Multivariable Control of a Planar Magnetic Levitator

  • Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents a high-precision magnetically levitated (maglev) stage to meet demanding motion specifications in the next-generation precision manufacturing and nanotechnology. Characterization of dynamic behaviors of such a motion stage is a crucial task. In this paper, we address the issues related to the stochastic modeling of the stage including transfer function identification, and noise/disturbance analysis and prediction. Provided are test results on precision dynamics, such as fine settling, effect of optical table oscillation, and position ripple. To deal with the dynamic coupling in the platen, we designed and implemented a multivariable linear quadratic regulator, and performed time-optimal control. We demonstrated how the performance of the current maglev stage can be improved with these analyses and experimental results. The maglev stage operates with positioning noise of 5 nm rms in $\chi$ and y, acceleration capabilities in excess of 2g(20 $m/s^2$), and closed-loop crossover frequency of 100 Hz.

릴레이와 비례제어기를 이용한 이차시간지연 모델에 대한 목표함수를 이용한 IMC-PID제어기 동조 (System Identification(SOPTD) using relay feedback test combined with P controller and Design of IMC-PID controller via Target Function)

  • 구민;서병설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1862-1863
    • /
    • 2006
  • In this paper, A new tuning method for IMC-PID controller is proposed with the identification using the relay method from closed-loop transfer function. It is considered a second-order plus delay time(SOPDT) model and selected a third-order plus delay time transfer function model as a target function. The filter function is derived from the suitable target function to satisfy the design specifications. A robustness test was done to verify the robust-stability.

  • PDF

AIS용 전력 증폭기 모듈의 새로운 출력 제어 회로 설계 및 제작 (The Novel Control Circuit Design and Implementation for an AIS Power Amplifier Module)

  • 한재룡;이종환;염경환
    • 한국전자파학회논문지
    • /
    • 제15권3호
    • /
    • pp.251-257
    • /
    • 2004
  • 연안에서 선박의 안전한 항행과 관제를 위해 선박간 또는 선박과 관제소간의 항행정보를 교환할 수 있도록 하는 AIS(Automatic Identification System)는 운용 방식(Low setting, High setting)에 따라 서로 다른 송신 출력 크기를 가지며, 1 ms(Transmitter Setting Time)안에 각각의 최종 출력 크기 의 20% 이내로 도달하도록 하는 동작 성능을 요구한다. 본 논문에서는 이와 같은 AIS의 송신 출력 특성에 부합할 수 있도록 전력 증폭기 모듈에 적절한 궤환 회로를 제안하고 이를 설계, 제작하였다.

RHC를 기반으로 하는 열간압연 루퍼 제어 (RHC based Looper Control for Hot Strip Mill)

  • 박철재
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, a new looper controller is proposed to minimize the tension variation of a strip in the hot strip finishing mill. The proposed control technology is based on a receding horizon control (RHC) to satisfy the constraints on the control input/state variables. The finite terminal weighting matrix is used instead of the terminal equality constraint. The closed loop stability of the RHC for the looper system is analyzed to guarantee the monotonicity of the optimal cost. Furthermore, the RHC is combined with a 4SID(Subspace-based State Space System Identification) model identifier to improve the robustness for the parameter variation and the disturbance of an actuator. As a result, it is shown through a computer simulation that the proposed control scheme satisfies the given constraints on the control inputs and states: roll speed, looper current, unit tension, and looper angle. The control scheme also diminishes the tension variation for the parameter variation and the disturbance as well.

주파수역 피드백 시스템 인식을 이용한 이산시간 제어기 설계 (Discrete-Time Controller Design using Identification of Feedback System in Frequency Domain)

  • 정유철;심영복;이건복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.99-104
    • /
    • 2001
  • Discrete-time controller design is proposed using feedback system identification in frequency domain. System Stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Popov criterion. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation components, DC disturbance and a pure integration.

  • PDF

주파수역 피드백시스템인식을 이용한 연속시간 제어기 설계 (Continuous-Time Controller Design using Identification of Feedback System in Frequency Domain)

  • 양호석;정유철;이건복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.664-669
    • /
    • 2001
  • Continuous-time controller design is proposed using feedback system identification in frequency domain. System stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Nyquist stability. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation and DC disturbance.

  • PDF

리니어 모터의 매개변수 추정과 근사화의 오차 분석 (Parameter Identification and Error Analysis of Approximation method for Linear motors)

  • 남재우;오준태;김규식
    • 전자공학회논문지SC
    • /
    • 제49권4호
    • /
    • pp.61-68
    • /
    • 2012
  • 본 논문에서는 리니어 컴프레서를 위한 폐루우프 센서리스 스트로크 제어시스템이 구성되었다. 피스톤 위치를 정확히 알아내기 위해 모터 매개변수를 피스톤 위치와 모터 전류의 함수로 추정하였다. 이 매개변수 데이터는 ROM 테이블에 저장한 뒤 차 후 피스톤 위치를 정확히 알아내는데 사용된다. 또한, 추정된 전동기 매개변수의 데이터 크기를 줄이기 위해 여러 형태의 곡면 함수로 근사화 하는 작업을 수행하였고, 공간분할을 통해 추정오차를 줄일 수 있었다. 곡면함수의 차수와 공간분할의 개수가 매개변수의 추정오차와 연산시간에 미치는 영향을 분석하였다.

자기베어링으로 지지되는 연성축계의 식별 및 강인 제어에 관한 연구 (A Study on the Identification and Robust Control of Flexible Rotor Supported by Magnetic Bearing)

  • 안형준;전수;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2000
  • The magnetic bearing system are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing system, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics - and non-linearity of magnetic bearings itself. In this paper the identification and robust control of flexible rotor supported by magnetic bearing are discussed. We measure and identify overall system that contains not only flexible rotor model but also magnetic bearing and time delay. The structured and unstructured uncertainties are modeled that cover variations of natural frequencies, uncertainties in sensor and actuator gains and unmodeled dynamics. And desired performances are specified with several weighting function. Using augmented system that includes identified model, uncertainties, and weighting functions, μ-synthesis is applied to flexible rotor supported with magnetic bearing. The flexible rotor was spin up over the first flexible critical speed.

  • PDF

소형 위성 카메라의 영상안정화를 위한 초점면부 보정장치의 제어 (Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera)

  • 강명수;황재혁;배재성
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.86-94
    • /
    • 2016
  • In this paper, position control of focal plane compensation device using piezoelectric actuator is conducted. The forcal plane compensation device installed on earth observation satellite camera compensates micro-vibration from reaction wheels. In this study, four experimental models of the open-loop compensation device are derived using MATLAB system identification toolbox in the input range of 0~50Hz. Subsequently, the PID controller for each model is designed and the performance test of each controller is conducted through MATLAB/Simulink. According to frequency response analysis of the closed-loop compensation device system, the PID controller designed for 38~50Hz input range has enough tracking performance for the whole 0~50Hz input range. The maximum output error is about $1{\mu}m$ for the input range. The simulation results has been verified by the experimental method.

궤환 모델 개선법 : 부정정 구조물에의 적용 (Feedback Model Updating: Application to Indeterminate Structure)

  • 정훈상;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.59-64
    • /
    • 2003
  • The parameter modification of the initial FEM model to match it with the experimental results needs the modal information and the modal sensitivity matrix to the parameter change. There are two cases this methodology is ill-equip to deal with; the deficiency of the necessary modal information and the ill-conditioning of the sensitivity matrix. In this research, a novel concept of the feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains as the reference signal is proposed. There are 2 advantages using this external feedback excitation. First, we can use the change of the system response such as modal data by the active energy Path from the sensor to the exciter. This change of the system response can be additional clues to the system dynamics that we want to know. Secondly, the external energy Path alternates the offset of the Parameter change to the system response. That means the modal sensitivity of the parameters becomes different from the original sensitivities by the feedback excitation. Through the feedback loop, we can change the similar modal sensitivities of some updating parameters and consequently discriminate the parameters using the closed-loop modal data. To demonstrate the discrimination performance, the parameter estimation of an indeterminate structure by use of the feedback method is introduced.

  • PDF