• Title/Summary/Keyword: closed plant factory

Search Result 47, Processing Time 0.019 seconds

Growth Modeling of Perilla frutescens (L.) Britt. Using Expolinear Function in a Closed-type Plant Factory System (완전제어형 식물공장에서 선형지수함수를 이용한 들깨의 생육 모델링)

  • Seounggwan Sul;Youngtaek Baek;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 2023
  • Growth modeling in plant factories can not only control stable production and yield, but also control environmental conditions by considering the relationship between environmental factors and plant growth rate. In this study, using the expolinear function, we modeled perilla [Perilla frutescens (L.) Britt.] cultivated in a plant factory. Perilla growth was investigated 12 times until flower bud differentiation occurred after planting under light intensity, photoperiod, and the ratio of mixed light conditions of 130 μmol·m-2·s-1, 12/12 h, red:green:blue (7:1:2), respectively. Additionally, modeling was performed to predict dry and fresh weights using the expolinear function. Fresh and dry weights were strongly positively correlated (r = 0.996). Except for dry weight, fresh weight showed a high positive correlation with leaf area, followed by plant height, number of leaves, number of nodes, leaf length, and leaf width. When the number of days after transplanting, leaf area, and plant height were used as independent variables for growth prediction, leaf area was found to be an appropriate independent variable for growth prediction. However, additional destructive or non-destructive methods for predicting growth should be considered. In this study, we created a growth model formula to predict perilla growth in plant factories.

Development of Potassium Concentration of Nutrient and Supply Method for Low Potassium Lettuce Production in a Closed-type Plant Factory System (완전제어형 식물공장에서 저칼륨 상추 생산을 위한 적정 칼륨 농도 조성 및 처리시기 개발)

  • Choi, Young Bae;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.40-45
    • /
    • 2018
  • Potassium in vegetables is known to have an adverse impact on a patient with chronic kidney desease. However, since vegetables also contain many other nutrient, consumption of vegetables by these patients is inevitable. The objective of this study was conducted to develop a fresh lettuce which contains low level of potassium for nephropathy in a closed-type plant factory system. Lettuce of "Charles" was used for experiment. The plants were cultivated in hydroponic system with a 16-h photoperiod at $15-21^{\circ}C$, 65% RH, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(LED W:R, 9:1) and $600-650mg{\cdot}L^{-1}$ $CO_2$ during 28 days. Nutrient solution which contains 1%, 5% and 10% potassium compared to conventional composition were supplied at 1 week and 2 weeks before harvest. The content of potassium and macro elements in leafy vegetables were analyzed by ICP emission spectroscopy after harvest. The potassium content in leaf of the 2 weeks before harvest treatment was significantly lower at than control. There were no significant differences between control and treatments in fresh weight and number of leaves. But there were differences among treatments. Considering the vegetable amounts consumed by nephropathy patients, the supply of nutrient which contain 1% and 5% potassium at 2 weeks before harvest was suitable for low potassium lettuce production. This study indicated that low potassium lettuce could be produced by developed nutrient composition and supply method.

Effects of Photo/dark period and Relative Humidity during Dark Period on Growth and Tipburn Occurrence of Water Dropwort (Oenanthe stolonifera DC.) in a Closed-type Plant Factory (밀폐형 식물공장에서 명/암주기와 암기동안의 상대습도가 미나리 생육과 팁번 발생에 미치는 영향)

  • An, Jae Uk;Joung, Kyoung Hee;Yoon, Hae Suk;Hwang, Yeon Hyeon;Hong, Gwang Pyo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • This research investigated the effect of photo/dark period and relative humidity during dark period on the growth and quality of water dropwort in a closed-type plant factory system. At 30 days after planting, the shoot fresh weight of water dropwort under relative humidity of 60/90%(light/dark) treatment significantly higher than that under relative humidity of 60/60% treatment. The shoot fresh weight of water dropwort increased by extending light period under relative humidity of 60/60% treatment, but 16/8h photo/dark period showed the best shoot fresh weight, followed by 20/4h and 22/2h under relative humidity of 60/90% treatment. In the relative humidity of 60/90% treatment, the tipburn occurrence was reduced under 16/8h photo/dark period condition as 1.4%, whereas it was significantly increased under 20/4h and 22/2h of relatively long light time duration as 15.5% and 30.3%, respectively. In the relative humidity of 60/60% treatment, the tipburn occurrence was 15.5% under 16/8h photo/dark period condition and those under 20/4h and 22/2h photo/dark period condition were higher than 25%. The stem hardness of water dropwort was lowest in relative humidity of 60/90% and 16/8h photo/dark period treatment. The mineral contents of leaves were decreased by extending light period, but the contents of Ca were not different significantly among the treatments except the 60/60% and 22/2h treatment.

Growth of Leaf Lettuce as Affected by Light Quality of LED in Closed-Type Plant Factory System (완전제어형 식물공장시스템에서 LED 광질에 대한 잎상추의 생육)

  • Cha, Mi-Kyung;Cho, Ju-Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • The objective of this study was to know the growth response and light use efficiency of leaf lettuce (Lactuca sativa L.) 'Yorum Cheongchukmyeon' (green leaf lettuce) and 'Hongyom Jeokchukmyeon' (red leaf lettuce) under different RGB (Red:Green:Blue) ratio in a closed-type plant factory system. The plants were hydroponically cultured with a 12-h photoperiod at $20{\sim}25^{\circ}C$, 60~70% RH and 600~900 ${\mu}mol{\cdot}mol^{-1}$ $CO_2$. The light treatments were combined in three colors LEDs (red, blue, and white) and RGB ratios (1 : 4 : 5, 5 : 0 : 5, 5 : 2 : 3, 7 : 0 : 3, 7 : 1 : 2, and 8 : 1 : 1), however, as the light intensities of treatments were different. Growth characteristic response in both lettuces were significantly as affected by interaction between cultivar and light quality, when they were grown under different light quality conditions. Plant heights of green and red leaf lettuce were the lowest in 1 : 4 : 5 and 8 : 1 : 1, respectively. The highest length and number of leaf were showed 8 : 1 : 1 and 7 : 0 : 3 for the green and 5 : 2 : 3 and 8 : 1 : 1 for the red, respectively. Shoot dry weights of green and red leaf lettuce were the heaviest in 7 : 0 : 3 and 8 : 1 : 1, respectively. Leaf width and leaf shape index were significant about cultivar and light quality. Leaf widths of green and red leaf lettuce were the largest in 8 : 1 : 1 and 5 : 2 : 3, respectively. Leaf shape index of green and red leaf lettuce were the largest in 1 : 4 : 5 and 1 : 4 : 5, respectively. Shoot fresh weight and light use efficiency were significant about cultivar and light quality. Shoot fresh weights of green and red leaf lettuce were the heaviest in 7 : 0 : 3 and 8 : 1 : 1, respectively. Light use efficiencies of green and red leaf lettuce were the highest in 7 : 0 : 3 and 5 : 0 : 5, respectively. These results suggested that the ratio of RGB was 5~7 : 0~2 : 1~3 to cultivate leaf lettuce in a plant factory system.

Growth Characteristics of Common Ice Plant (Mesembryanthemum crystallinum L.) on Nutrient Solution, Light Intensity and Planting Distance in Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 배양액, 광도 및 재식거리에 따른 Common Ice Plant의 생육 특성)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.89-94
    • /
    • 2016
  • This study was conducted to determine the optimum nutrient solution, pH, irrigation interval, light intensity and planting density to growth of common ice plant (Mesembryanthemum crystallinum L.) in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-h photoperiod were used. Nutrient film technique systems with three layers were used for the plant growth system. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Treatments were comparison of the nutrient solution of Horticultural Experiment Station in Japan (NHES) and the nutrient solution of Jeju National University (NJNU), pH 6.0 and 7.0, irrigation interval 5 min and 10 min, light intensity 90 and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and within-row spacing 10 cm, 15 cm, 20 cm and 25 cm with between-row spacing 15 cm. Optimum macronutrients were composed N 7.65, P 0.65, K 4.0, Ca 1.6 and Mg $1.0mM{\cdot}L^{-1}$. There were no significant interactions between pH 6.0 and 7.0 about shoot fresh weight and shoot dry weight of common ice plant. Irrigation interval 5 min and 10 min was also the same result. Shoot fresh weight and shoot dry weight were highest at $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Shoot fresh weight and shoot dry weight were decreased according to increasing the planting density. From the above results, we concluded that optimum nutrient solution, optimum levels of pH, irrigation interval, light intensity and planting density were 6.0-7.0 and 10 min, $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and $15{\times}15cm$, respectively for growth of common ice plant in a closed-type plant production system.

Growth and Anthocyanin Content of Lettuce as Affected by Artificial Light Source and Photoperiod in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 인공광원과 광조사 시간에 따른 상추의 생장 및 안토시아닌 함량)

  • Park, Ji Eun;Park, Yoo Gyeong;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • This study was conducted to examine the effect of artificial light source and photoperiod on the growth of leaf lettuce (Lactuca sativa L.) 'Seonhong Jeokchukmyeon' in a closed-type plant production system. Seedlings were grown under 3 light sources, fluorescent lamp (FL, Philips Co. Ltd., the Netherlands), WL #1 (Hepas Co. Ltd., Korea), and WL #2 (FC Poibe Co., Ltd., Korea), each with 3 photoperiods, 12/12, 18/6, and 24/0 (Light/Dark). An irradiance spectrum analysis showed that FL has various peaks in the 400-700 nm range, while WL #1 and WL #2 have only one monochromatic peak at 450 and 550 nm, respectively. The greatest plant height, fresh and dry weights were obtained in the 24/0 (Light/Dark) photoperiod. The 24/0 (Light/Dark) photoperiod treatment promoted vegetative growth of the leaf area. Length of the longest root, number of leaves, fresh weight, and total anthocyanin contents were greater in FL than in either WL #1 or #2. The greatest chlorophyll fluorescence (Fv/Fm) was found in the 12/12 (Light/Dark) photoperiod with FL treatment. The energy use efficiency of the LED increased by about 35-46% as compared to FL. Results suggest a possibility of LED being used as a substitute light source for fluorescent lamp for lettuce cultivation in a plant factory system.

Comparison of Combined Light-emitting Diodes and Fluorescent Lamps for Growth and Light Use Efficiency of Red Leaf Lettuce (혼합 발광다이오드와 형광등에서 자란 적치마 상추의 생육 및 광 이용 효율 비교)

  • Son, Ki-Ho;Song, Min-Jeong;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.139-145
    • /
    • 2016
  • The objective of this study was to compare the growth and light use efficiency of red leaf lettuce grown under three types of combined light-emitting diodes (LEDs) and fluorescent lamps (FL) in a closed-type plant production system. The eighteen days-old lettuce seedlings of red leaf lettuce (Lactuca sativa L., 'Jeokchima') were transplanted to the close-type plant production system equipped with three types of combined LEDs with red (R, 655 nm), blue (B, 456 nm), green (G, 515 nm), and white (W, 456 nm + 558 nm) (R:B=8:2, R:W:B=8:1:1, R:G:B=8:1:1) and FL. The seedlings were grown under normal growth conditions ($20^{\circ}C$, $181{\pm}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 h photoperiod) for four weeks. Lettuce plants grown under FL had significantly higher leaf shape index than those under all LED treatments. Although growth of shoots and roots was not show any significant difference among LED treatments, all of the LED treatments induced about 34% higher shoot fresh weight than that of the FL. On the other hands, the total power consumption of FL was 145 kW for 4 weeks, while the mean value of LED treatments was 54 kW, which was about 3 times lower value than that of the FL. The light use efficiency based on dry matter in LED treatments was about 34 mg/W and this was about 3.5 times higher energy saving value than the FL. In conclusion, this study showed that irradiation of optimal combined LEDs in closed-type plant production systems can improve the lettuce growth as well as maximize in light use efficiency through energy saving than the FL.

Effect of Mineral Nutrient Control on Nutrient Uptake, Growth and Yield of Single-Node Cutting Rose Grown in a Closed Hydroponic System (순환식 수경재배시 무기이온 조절이 Single-Node Cutting 장미의 양분흡수, 생육 및 품질에 미치는 영향)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.252-260
    • /
    • 2008
  • This study was conducted to observe the characteristics of mineral nutrient uptake of single-node cutting rose 'Versilla' and to determine optimal nutrient solution control method for soilless culture of 'Versilla' in a closed hydroponic system. Nutrient solution was managed by five different control methods: macro- and micro-element control in aeroponic system (M&M), macroelement control in aeroponic system (M), nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system(EC-A); EC control in deep flow technique system(EC-D). The concentration of $NO_3$-N exceeds optimal range whereas P and Mg decreased at the later stage of plant growth with the EC control method, EC-A and EC-D. The overall mineral nutrient content increased with S. On the other hand the nutrient content at the root environment was maintained optimal with M&M and M. The nutrient solution control methods had significantly effect on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with the other mineral nutrients control methods. The maximal efficiency of photochemistry (Fv/Fm) was higher for M&M, M and S than that with EC-A and EC-D. Based on the above results, it is highly recommended to control nutrient solution by mineral nutrient control methods (M&M and M) in a closed hydroponic system for single-node cutting rose, 'Versillia'.

Codex Guideline for Organically Grown Food and its Implementation of Organic Crop and Animal Production in Korea (Codex 유기식품규격 내용과 한국 유기경종과 축산의 적응 실천)

  • 손상목
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.3
    • /
    • pp.17-34
    • /
    • 2000
  • This paper is aim to report the core aspects of Codex guideline for organically grown food which is finalized by FAO/WHO Codex Alimentarius Commission on May 2000 in 28th session of the Codex committee on food labelling. The chapter of animal production had discussed for a long time before it was finalized in Ottawa/canada as well as use of GMO(Genetically modified organism), manure from factory farming, animal welfare, and fodder inputs consisting of at least 85% for ruminants and 80% for non-ruminants. As the guideline for Codex set out the several things which is very difficult for Asian country, Organic farmer in Korea should pay an attention to maintain/increase the fertility and biological activity by cultivation of legumes, green manures or deep-rooting plants in an appropriate multi-annual rotation programme, and incorporation in the soil of organic material from holding producing in accordance with the guidelines. Pest, diseases and weeds should be controlled by choice of appropriate varieties, appropriate rotation, mechanical cultivation, diversified ecosystems, flame weeding, animal weeding and steam sterilization. The use of plant growth hormone, GMO and manure from industrial management system are not allowed, and closed recycling system, rotation, resistant seeds again pest and disease should be practiced in organic farming. But these are not unfortunately practiced in the country. In the conclusion it was strongly suggested to enact the Basic Standard for Korean organic agriculture which contains the core principles of Codex guidelines, and to try the importation of the most advanced theory, skills and technology from leading country in organic farming.

  • PDF

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.