• Title/Summary/Keyword: cloned animal

Search Result 482, Processing Time 0.019 seconds

Regulatory Sequences in the 5' Flanking Region of Goat β-Casein Gene

  • Huang, Mu-Chiou;Chao, Jiunn-Shiuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1628-1633
    • /
    • 2001
  • A goat ${\beta}$-casein gene was cloned and sequenced. Our previous study had determined the nucleotide sequences of the 5' flanking region and the structural gene including all 9 exons. In the present study, investigations were done on the regulatory sequences in the 5' flanking region of the goat ${\beta}$-casein gene by aligning and comparing it with the same gene from other mammals. The results showed that -200/-1 bp of the 5' flanking sequences contained six conserved clusters, in which the sites of gene expression regulated by the transcription factor and hormone might exist. It showed that fourteen glucocorticoid receptor elements, two cAMP responsive elements, two SV40 virus enhancer core sequences, two OCT-1 binding elements and one CTF/NF-1 binding element were dispersed in the 5' flanking region of goat ${\beta}$-casein gene. Our findings are perhaps valuable for the elucidation of the molecular mechanisms that control the expression of the goat ${\beta}$-casein gene.

Cloning of Chicken Microsomal Glutathione S-transferase 1 Gene (MGST1) and Identification of Its Different Splice Variants

  • Wang, X.-T.;Zhang, H.;Zhao, C.-J.;Li, J.-Y.;Xu, G.-Y.;Lian, L.-S.;Wu, C.-X.;Deng, Xuemei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Mammal microsomal glutathione transferase 1 (MGST1) can conjugate many toxic or carcinogenic substances and depress oxidative stress. In this study, Chicken MGST1 and its variants were cloned for the first time and were composed of 956 or 944 nucleotides. The 12 nt deletion in the exon 2 did not alter the GT-AG rule and the ORFs for the two MGST1 variants were the same, which both comprised 465 nucletides and encoded a peptide with 155 amino acids. It was found that the two different splice variants identified using RT-PCR expressed in all three organs investigated of Dwarf Brown Chicken, namely liver, spleen and shell gland. Moreover, the expression level of MGST1 mRNA in the liver of Dwarf Brown chickens was the highest (p<0.01), and there were no significant differences between the spleen and the shell gland. These results provide a base for studying the biological function of Chicken MGST1.

Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut

  • Chandrasekharaiah, Matam;Thulasi, Appoothy;Bagath, M.;Kumar, Duvvuri Prasanna;Santosh, Sunil Singh;Palanivel, Chenniappan;Jose, Vazhakkala Lyju;Sampath, K.T.
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and $37^{\circ}C$, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.

Relationship among porcine lncRNA TCONS_00010987, miR-323, and leptin receptor based on dual luciferase reporter gene assays and expression patterns

  • Ding, Yueyun;Qian, Li;Wang, Li;Wu, Chaodong;Li, DengTao;Zhang, Xiaodong;Yin, Zongjun;Wang, Yuanlang;Zhang, Wei;Wu, Xudong;Ding, Jian;Yang, Min;Zhang, Liang;Shang, Jinnan;Wang, Chonglong;Gao, Yafei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.219-229
    • /
    • 2020
  • Objective: Considering the physiological and clinical importance of leptin receptor (LEPR) in regulating obesity and the fact that porcine LEPR expression is not known to be controlled by lncRNAs and miRNAs, we aim to characterize this gene as a potential target of SSC-miR-323 and the lncRNA TCONS_00010987. Methods: Bioinformatics analyses revealed that lncRNA TCONS_00010987 and LEPR have SSC-miR-323-binding sites and that LEPR might be a target of lncRNA TCONS_00010987 based on cis prediction. Wild-type and mutant TCONS_00010987-target sequence fragments and wild-type and mutant LEPR 3'-UTR fragments were generated and cloned into pmiRRB-REPORTTM-Control vectors to construct respective recombinant plasmids. HEK293T cells were co-transfected with the SSC-miR-323 mimics or a negative control with constructs harboring the corresponding binding sites and relative luciferase activities were determined. Tissue expression patterns of lncRNA TCONS_00010987, SSC-miR-323, and LEPR in Anqing six-end-white (AQ, the obese breed) and Large White (LW, the lean breed) pigs were detected by real-time quantitative polymerase chain reaction; backfat expression of LEPR protein was detected by western blotting. Results: Target gene fragments were successfully cloned, and the four recombinant vectors were constructed. Compared to the negative control, SSC-miR-323 mimics significantly inhibited luciferase activity from the wild-type TCONS_00010987-target sequence and wild-type LEPR-3'-UTR (p<0.01 for both) but not from the mutant TCONS_00010987-target sequence and mutant LEPR-3'-UTR (p>0.05 for both). Backfat expression levels of TCONS_00010987 and LEPR in AQ pigs were significantly higher than those in LW pigs (p<0.01), whereas levels of SSC-miR-323 in AQ pigs were significantly lower than those in LW pigs (p<0.05). LEPR protein levels in the backfat tissues of AQ pigs were markedly higher than those in LW pigs (p<0.01). Conclusion: LEPR is a potential target of SSC-miR-323, and TCONS_00010987 might act as a sponge for SSC-miR-323 to regulate LEPR expression.

Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays

  • Ding, Yueyun;Zhu, Shujiao;Wu, Chaodong;Qian, Li;Li, DengTao;Wang, Li;Wan, Yuanlang;Zhang, Wei;Yang, Min;Ding, Jian;Wu, Xudong;Zhang, Xiaodong;Gao, Yafei;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.922-929
    • /
    • 2019
  • Objective: Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods: Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3'-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3'-UTR and pGL3 Control LDLR mutant-3'-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine premiR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3'-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results: Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR3'-UTR-driven (p<0.01), but not mutant LDLR-3'-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = -0.656, p<0.05). Conclusion: LDLR is a potential target of miR-20a, which might directly bind the LDLR 3'-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.

Developing a Gene-trapping Approach for Gene Identification Using Nuclear Transfer in Zebrafish (지브라물고기 복제방법에 의한 유전자 동정 및 유전자트랩법 개발)

  • Lee, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.155-164
    • /
    • 2004
  • This involves identifying and cloning trapped genes from cultured cells carrying the gene-trap constructs and generating cloned zebrafish using these cells for functional study. Gene-trapping studies in gene-trapped cells were carried out in initial and cloned zebrafish carrying gene-trap events were successfully produced based on the nuclear transplantation technique. Two kind of retroviral gene-trap constructs were adopted. The first one(SA/GFP-TP), constructed in my laboratory, carries a GFP reporter gene containing a splicing acceptor and an internal neo gene. The second one(Neo-TP), obtained from Dr. Hicks (Hicks et al., 1997), contains a promoter-less neo gene located in the LTR sequence of a retroviral vector. The infected cells were subjected to drug selection(neomycin treatment) because the two constructs carry the neomycin resistant gene. All those cells survived the neomycin treatment should carry the proviral insertions. For Neo-TP, Isolated DNA from the neomycin-resistant fibroblast cells infected by Neo-TP, was digested with EcoR1 restriction enzyme and transformed into bacteria after ligation. This procedure led to the isolation of seven clones carrying flanking cellular DNA with a typical retroviral integration signature sequence. These clones contained genomic DNA ranging from 1kb to 7kb and sequences of 300-600 bp were obtained from each of the rescued plasmids. Database searching showed that all of them share high homology to zebrafish sequences. For fish cloning using tagged cells, initially, nucleus donors directly selected from a mixture of cells(Neo-TP cells) were used. A total of 44 embryos(3.7%) out of 1179 transplants were reached blastula stage; 8 of these embryos(0.8%) hatched and 3(0.3%) of them survived to adulthood. One out of three lived cloned zebrafish has an amplified fragment and was labeled with 32P.

Antagonistic Effects of Flumazenil on Tiletamine-Zolazepam Induced Anesthesia in Dogs (Tiletamine-Zolazepam에 의한 개의 마취에서 Flumazenil의 길항효과)

  • Won, Heung-Seok;Lee, Jae-Yeon;Jeong, Seong-Mok;Lee, Soo-Jin;Park, Chang-Sik;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.336-342
    • /
    • 2010
  • The purpose of this study was to determine the antagonistic effects of flumazenil on anesthesia induced with tiletamine/zolazepam in dogs. The anesthetic effects (sedation, analgesic, muscle relaxation, posture and auditory response score), vital signs (heart rate, respiratory rate and rectal temperature) and blood biochemistry (glucose (GLU), total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) were examined as indicators of the antagonistic effects. A total of 6 clinically healthy mongrel dogs were used in this study. The dogs in TZ group received administration of tiletamine/zolazepam 10 mg/kg IV. The dogs in TZF group received administration dose of TZ 10 mg/ kg IV followed by the administration of flumazenil 0.1 mg/kg 20 minutes after administering a TZ 10 mg/kg dose. There were significant differences in the recovery of anesthesia between the groups. The GLU level in the TZF group after the administration of flumazenil was significantly higher than that of the TZ group. There was a larger change in the HR in the TZF group than in the TZ group until 30 minutes after flumazenil administration. The sternal recumbency, standing and walking times of the TZF group were faster than those of the TZ group. In conclusion, flumazenil showed antagonistic effect against tiletamine/zolazepam in dogs. When recovering from anesthesia, flumazenil reduced sternal recumbency, standing and walking times.

Medetomidine Sedation and Its Antagonism by Yohimbine in Dogs (개에서 Medetomidine 진정에 대한 Yohimbine의 길항작용)

  • Heo, Keong-Hee;Lee, Jae-Yeon;Choi, Kyeong-Ha;Cho, Jin-Haeng;Park, Chang-Sik;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.343-347
    • /
    • 2010
  • The purpose of this study was to determine the antagonistic effects of yohimbine on sedation induced in dogs with medetomidine. Six mixed breed dogs were repeatedly used at a 2 weeks withdrawal time in this study. The dogs received $40\;{\mu}g/kg$ of medetomidine followed 15 minutes later by 0.2 ml/kg saline solution (group M) or 0.11 mg/kg yohimbine (group MY). All the dogs were examined before and 5, 15, 30, 45, 60, 75, 90, 120 and 150 minutes after the injection of medetomidine, and the induction and recovery times, vital signs, blood biochemistry and anesthetic quality were recorded. There were significant differences in the recovery of anesthesia between the groups. In both groups the heart rate decreased rapidly down to five minutes after the administration of medetomidine. The activity of ALT, AST and the protein concentration did not change significantly in either group and there was no significant difference between them at any time. Response to noise, muscle tone and analgesic score in the MY group at 30 minutes were significantly lower than those of the M group. When recovering from anesthesia, the dogs treated with yohimbine took less time to achieve sternal recumbency and less time to be able to stand and walk. It was concluded that yohimbine reversed effectively medetomidine sedation in dogs.

Cloning of Farm Animals in Japan; The Present and the Future

  • Shioya, Yasuo
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.37-43
    • /
    • 2001
  • 1. About fifty thousand of cattle embryos were transferred and 16000 ET-calves were born in 1999. Eighty percents of embryos were collected from Japanese Black beef donors and transferred to dairy Holstein heifers and cows. Since 1985, we have achieved in bovine in vitro fertilization using immature oocytes Collected from ovaries of slaughterhouse. Now over 8000 embryos fertilized by Japanese Black bull, as Kitaguni 7 -8 or Mitsufuku, famousbulls as high marbling score of progeny tests were sold to dairy farmers and transferred to their dairy cattle every year. 2. Embryo splitting for identical twins is demonstrated an useful tool to supply a bull for semen collection and a steer for beef performance test. According to the data of Dr.Hashiyada (2001), 296 pairs of split-half-embryos were transferred to recipients and 98 gave births of 112 calves (23 pairs of identical twins and 66 singletons). 3. A blastomere-nuclear-transferred cloned calf was born in 1990 by a joint research with Drs.Tsunoda, National Institute of Animal Industry (NIAI) and Ushijima, Chiba Prefectural Farm Animal Center. The fruits of this technology were applied to the production of a calf from a cell of long-term-cultured inner cell mass (1998, Itoh et al, ZEN-NOH Central Research Institute for Feed and Livestock) and a cloned calf from three-successive-cloning (1997, Tsunoda et al.). According to the survey of MAFF of Japan, over 500 calves were born until this year and a half of them were already brought to the market for beef. 4. After the report of "Dolly", in February 1997, the first somatic cell clone female calves were born in July 1998 as the fruits of the joint research organized by Dr. Tsunoda in Kinki University (Kato et al, 2000). The male calves were born in August and September 1998 by the collaboration with NIAI and Kagoshima Prefecture. Then 244 calves, four pigs and a kid of goat were now born in 36 institutes of Japan. 5. Somatic cell cloning in farm animal production will bring us an effective reproductive method of elite-dairy- cows, super-cows and excellent bulls. The effect of making copy farm animal is also related to the reservation of genetic resources and re-creation of a male bull from a castrated steer of excellent marbling beef. Cloning of genetically modified animals is most promising to making pig organs transplant to people and providing protein drugs in milk of pig, goat and cattle.

  • PDF

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.