• 제목/요약/키워드: clinical genomics

검색결과 363건 처리시간 0.023초

Long non-coding RNA linc00152 acting as a promising oncogene in cancer progression

  • Seo, Danbi;Kim, Dain;Kim, Wanyeon
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.36.1-36.6
    • /
    • 2019
  • The incidence and mortality rate of cancer continues to gradually increase, although considerable research effort has been directed at elucidating the molecular mechanisms underlying biomarkers responsible for tumorigenesis. Accumulated evidence indicates that the long non-coding RNAs (lncRNAs), which are transcribed but not translated into functional proteins, contribute to cancer development. Recently, linc00152 (an lncRNA) was identified as a potent oncogene in various cancer types, and shown to be involved in cancer cell proliferation, invasiveness, and motility by sponging tumor-suppressive microRNAs acting as a competing endogenous RNA, binding to gene promoters acting as a transcriptional regulator, and binding to functional proteins. In this review, we focus on the oncogenic role of linc00152 in tumorigenesis and provided an overview of recent clinical studies on the effects of linc00152 expression in human cancers.

Membrane Proteins Involved in Epithelial-Mesenchymal Transition and Tumor Invasion: Studies on TMPRSS4 and TM4SF5

  • Kim, Semi;Lee, Jung Weon
    • Genomics & Informatics
    • /
    • 제12권1호
    • /
    • pp.12-20
    • /
    • 2014
  • The epithelial-mesenchymal transition (EMT) is one mechanism by which cells with mesenchymal features can be generated and is a fundamental event in morphogenesis. Recently, invasion and metastasis of cancer cells from the primary tumor are now thought to be initiated by the developmental process termed the EMT, whereby epithelial cells lose cell polarity and cell-cell interactions, and gain mesenchymal phenotypes with increased migratory and invasive properties. The EMT is believed to be an important step in metastasis and is implicated in cancer progression, although the influence of the EMT in clinical specimens has been debated. This review presents the recent results of two cell surface proteins, the functions and underlying mechanisms of which have recently begun to be demonstrated, as novel regulators of the molecular networks that induce the EMT and cancer progression.

Prediction of Quantitative Traits Using Common Genetic Variants: Application to Body Mass Index

  • Bae, Sunghwan;Choi, Sungkyoung;Kim, Sung Min;Park, Taesung
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.149-159
    • /
    • 2016
  • With the success of the genome-wide association studies (GWASs), many candidate loci for complex human diseases have been reported in the GWAS catalog. Recently, many disease prediction models based on penalized regression or statistical learning methods were proposed using candidate causal variants from significant single-nucleotide polymorphisms of GWASs. However, there have been only a few systematic studies comparing existing methods. In this study, we first constructed risk prediction models, such as stepwise linear regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN), using a GWAS chip and GWAS catalog. We then compared the prediction accuracy by calculating the mean square error (MSE) value on data from the Korea Association Resource (KARE) with body mass index. Our results show that SLR provides a smaller MSE value than the other methods, while the numbers of selected variables in each model were similar.

Cohesin gene mutations in tumorigenesis: from discovery to clinical significance

  • Solomon, David A.;Kim, Jung-Sik;Waldman, Todd
    • BMB Reports
    • /
    • 제47권6호
    • /
    • pp.299-310
    • /
    • 2014
  • Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations.

Exploring cancer genomic data from the cancer genome atlas project

  • Lee, Ju-Seog
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.607-611
    • /
    • 2016
  • The Cancer Genome Atlas (TCGA) has compiled genomic, epigenomic, and proteomic data from more than 10,000 samples derived from 33 types of cancer, aiming to improve our understanding of the molecular basis of cancer development. Availability of these genome-wide information provides an unprecedented opportunity for uncovering new key regulators of signaling pathways or new roles of pre-existing members in pathways. To take advantage of the advancement, it will be necessary to learn systematic approaches that can help to uncover novel genes reflecting genetic alterations, prognosis, or response to treatments. This minireview describes the updated status of TCGA project and explains how to use TCGA data.

유전성 운동 및 감각 신경병의 DNA 진단 검사 (DNA diagnostic testing in hereditary motor and sensory neuropathies)

  • 최병옥
    • Journal of Genetic Medicine
    • /
    • 제4권2호
    • /
    • pp.115-121
    • /
    • 2007
  • Hereditary motor and sensory neuropathy (HMSN; Charcot-Marie-Tooth disease, CMT) was first described by Charcot and Marie in France and, independently, by Tooth in England in 1886. HMSN is the most common form of inherited motor and sensory neuropathy, and is a genetically heterogeneous disorder of the peripheral nervous system. Using positional cloning methods, the chromosomal localization (locus) of more than 40 inherited peripheral neuropathies was found in the last 15 years. However, these genetic analyses also show that many entities do not show linkage to the known loci. This issue deals with a clinical survey of inherited peripheral neuropathies regarding diagnostic approaches based on the molecular findings.

  • PDF

Metallothioneins and Oxidative Stress

  • Beattie, John H.;Trayhurn, Paul
    • Nutritional Sciences
    • /
    • 제5권4호
    • /
    • pp.228-233
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein(MT) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over- or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress. Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

Effects of Costunolide Derived from Saussurea lappa Clarke on Apoptosis in AGS Stomach Cancer Cell Lines

  • Sun, Seung-Ho;Ko, Seong-Gyu
    • 대한한의학회지
    • /
    • 제27권4호
    • /
    • pp.84-95
    • /
    • 2006
  • Costunolide is an active sesquiterpene lactone isolated from the root of Saussurea lappa Clarke and is known to exhibit a variety of biological activities, including anti-carcinogenic and anti-inflammatory effects. Nevertheless, the pharmacological pathways of costunolide have not yet been fully elucidated. In this study, its cytotoxic effects were examined using AGS gastric cancer cells. Its treatment resulted in apoptosis in a dose- and time-dependent manner. The effects were attributed to the regulation of pro-apoptotic molecules and suppression of anti-apoptotic molecules. These results suggest that costunolide may be a candidate to deal with gastric cancers by chemopreventive agents.

  • PDF

Polymers for Microfluidic Chips

  • Song Simon;Lee Kuen-Yong
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.121-128
    • /
    • 2006
  • Microfluidic systems have attracted much research attention recently in the areas of genomics, proteomics, pharmaceutics, clinical diagnostics, and analytical biochemistry, as they provide miniaturized platforms for conventional analysis techniques. The microfluidic systems allow faster and cheaper analysis using much smaller amounts of sample and reagent than conventional methods. Polymers have recently found useful applications in microfluidic systems due to the wide range of available polymeric materials and the relative ease of chemical modification. This paper discusses the fundamentals of microfluidic systems and the roles, essential properties and various forms of polymers used as solid supports in microfluidic systems, based on the recent advances in the use of polymers for microfluidic chips.

Comparative Viral Metagenomics of Environmental Samples from Korea

  • Kim, Min-Soo;Whon, Tae Woong;Bae, Jin-Woo
    • Genomics & Informatics
    • /
    • 제11권3호
    • /
    • pp.121-128
    • /
    • 2013
  • The introduction of metagenomics into the field of virology has facilitated the exploration of viral communities in various natural habitats. Understanding the viral ecology of a variety of sample types throughout the biosphere is important per se, but it also has potential applications in clinical and diagnostic virology. However, the procedures used by viral metagenomics may produce technical errors, such as amplification bias, while public viral databases are very limited, which may hamper the determination of the viral diversity in samples. This review considers the current state of viral metagenomics, based on examples from Korean viral metagenomic studies-i.e., rice paddy soil, fermented foods, human gut, seawater, and the near-surface atmosphere. Viral metagenomics has become widespread due to various methodological developments, and much attention has been focused on studies that consider the intrinsic role of viruses that interact with their hosts.