Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.11.145

Exploring cancer genomic data from the cancer genome atlas project  

Lee, Ju-Seog (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
Publication Information
BMB Reports / v.49, no.11, 2016 , pp. 607-611 More about this Journal
Abstract
The Cancer Genome Atlas (TCGA) has compiled genomic, epigenomic, and proteomic data from more than 10,000 samples derived from 33 types of cancer, aiming to improve our understanding of the molecular basis of cancer development. Availability of these genome-wide information provides an unprecedented opportunity for uncovering new key regulators of signaling pathways or new roles of pre-existing members in pathways. To take advantage of the advancement, it will be necessary to learn systematic approaches that can help to uncover novel genes reflecting genetic alterations, prognosis, or response to treatments. This minireview describes the updated status of TCGA project and explains how to use TCGA data.
Keywords
Clinical significance; Genomics; Methylation; Proteomics; The cancer genome atlas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404   DOI
2 Goswami CP and Nakshatri H (2014) PROGgeneV2: enhancements on the existing database. BMC Cancer 14, 970   DOI
3 Koch A, De Meyer T, Jeschke J and Van Criekinge W (2015) MEXPRESS: visualizing expression, DNA methyla-tion and clinical TCGA data. BMC Genomics 16, 636   DOI
4 Li J, Lu Y, Akbani R et al (2013) TCPA: a resource for cancer functional proteomics data. Nat Methods 10, 1046-1047
5 Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921   DOI
6 Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291, 1304-1351   DOI
7 DeNicola GM, Chen PH, Mullarky E et al (2015) NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 47, 1475-1481   DOI
8 Park YY, Kim K, Kim SB et al (2012) Reconstruction of nuclear receptor network reveals that NR2E3 is a novel upstream regulator of ESR1 in breast cancer. EMBO Mol Med 4, 52-67   DOI
9 Saha SK, Parachoniak CA, Ghanta KS et al (2014) Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature 513, 110-114   DOI
10 Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068   DOI
11 International Cancer Genome Consortium (2010) International network of cancer genome projects. Nature 464, 993-998   DOI
12 Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615   DOI
13 Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519-525   DOI
14 Cancer Genome Atlas Research Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337   DOI
15 Han L, Diao L, Yu S et al (2015) The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell 28, 515-528   DOI
16 Yates LA, Norbury CJ and Gilbert RJ (2013) The long and short of microRNA. Cell 153, 516-519   DOI
17 Spurrier B, Ramalingam S and Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3, 1796-1808   DOI
18 Gutman DA, Cobb J, Somanna D et al (2013) Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. J Am Med Inform Assoc 20, 1091-1098   DOI
19 Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431, 931-945   DOI
20 Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26, 1045-1057   DOI