• Title/Summary/Keyword: clinical genomics

Search Result 363, Processing Time 0.025 seconds

Comparison of digital PCR platforms using the molecular marker

  • Cherl-Joon Lee;Wonseok Shin;Minsik Song;Seung-Shick Shin;Yujun Park;Kornsorn Srikulnath;Dong Hee Kim;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.24.1-24.7
    • /
    • 2023
  • Assays of clinical diagnosis and species identification using molecular markers are performed according to a quantitative method in consideration of sensitivity, cost, speed, convenience, and specificity. However, typical polymerase chain reaction (PCR) assay is difficult to quantify and have various limitations. In addition, to perform quantitative analysis with the quantitative real-time PCR (qRT-PCR) equipment, a standard curve or normalization using reference genes is essential. Within the last a decade, previous studies have reported that the digital PCR (dPCR) assay, a third-generation PCR, can be applied in various fields by overcoming the shortcomings of typical PCR and qRT-PCR assays. We selected Stilla Naica System (Stilla Technologies), Droplet Digital PCR Technology (Bio-Rad), and Lab on an Array Digital Real-Time PCR analyzer system (OPTOLANE) for comparative analysis among the various droplet digital PCR platforms currently in use commercially. Our previous study discovered a molecular marker that can distinguish Hanwoo species (Korean native cattle) using Hanwoo-specific genomic structural variation. Here, we report the pros and cons of the operation of each dPCR platform from various perspectives using this species identification marker. In conclusion, we hope that this study will help researchers to select suitable dPCR platforms according to their purpose and resources.

Currents in Integrative Biochip Informatics

  • Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.1-9
    • /
    • 2001
  • scale genomic and postgenomic data means that many of the challenges in biomedical research are now challenges in computational sciences and information technology. The informatics revolutions both in clinical informatics and bioinformatics will change the current paradigm of biomedical sciences and practice of clinical medicine, including diagnostics, therapeutics, and prognostics. Postgenome informatics, powered by high throughput technologies and genomic-scale databases, is likely to transform our biomedical understanding forever much the same way that biochemistry did a generation ago. In this talk, 1 will describe how these technologies will in pact biomedical research and clinical care, emphasizing recent advances in biochip-based functional genomics. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine teaming algorithms will be presented. Issues of integrated biochip informatics technologies including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases will be discussed. Each step will be given with real examples from ongoing research activities in the context of clinical relevance. Issues of linking molecular genotype and clinical phenotype information will be discussed.

  • PDF

Toxicoinformatics: The Master Key for Toxicogenomics

  • Lee, Wan-Sun;Kim, Yang-Seok
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • The current vision of toxicogenomics is the development of methods or platforms to predict toxicity of un characterized chemicals by using '-omics' information in pre-clinical stage. Because each chemical has different ADME (absorption, distribution, mechanism, excretion) and experimental animals have lots of variation, precise prediction of chemical's toxicity based on '-omics' information and toxicity data of known chemicals is very difficult problem. So, the importance of bioinformatics is more emphasized on toxicogenomics than other functional genomics studies because these problems can not be solved only with experiments. Thus, toxicoinformatics covers all information-based analytical methods from gene expression (bioinformatics) to chemical structures (cheminformatics) and it also deals with the integration of wide range of experimental data for further extensive analyses. In this review, the overall strategy to toxicoinformatics is discussed.

Ultra-rare Disease and Genomics-Driven Precision Medicine

  • Lee, Sangmoon;Choi, Murim
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.42-45
    • /
    • 2016
  • Since next-generation sequencing (NGS) technique was adopted into clinical practices, revolutionary advances in diagnosing rare genetic diseases have been achieved through translating genomic medicine into precision or personalized management. Indeed, several successful cases of molecular diagnosis and treatment with personalized or targeted therapies of rare genetic diseases have been reported. Still, there are several obstacles to be overcome for wider application of NGS-based precision medicine, including high sequencing cost, incomplete variant sensitivity and accuracy, practical complexities, and a shortage of available treatment options.

Identification of ERBB pathway-activated cells in triple-negative breast cancer

  • Cho, Soo Young
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.3.1-3.4
    • /
    • 2019
  • Intratumor heterogeneity within a single tumor mass is one of the hallmarks of malignancy and has been reported in various tumor types. The molecular characterization of intratumor heterogeneity in breast cancer is a significant challenge for effective treatment. Using single-cell RNA sequencing (RNA-seq) data from a public resource, an ERBB pathway activated triple-negative cell population was identified. The differential expression of three subtyping marker genes (ERBB2, ESR1, and PGR) was not changed in the bulk RNA-seq data, but the single-cell transcriptomes showed intratumor heterogeneity. This result shows that ERBB signaling is activated using an indirect route and that the molecular subtype is changed on a single-cell level. Our data propose a different view on breast cancer subtypes, clarifying much confusion in this field and contributing to precision medicine.

Digenic or oligogenic mutations in presumed monogenic disorders: A review

  • Afif Ben-Mahmoud;Vijay Gupta;Cheol-Hee Kim;Lawrence C Layman;Hyung-Goo Kim
    • Journal of Genetic Medicine
    • /
    • v.20 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • Monogenic disorders are traditionally attributed to the presence of mutations in a single gene. However, recent advancements in genomics have revealed instances where the phenotypic expression of apparently monogenic disorders cannot be fully explained by mutations in a single gene alone. This review article aims to explore the emerging concept of digenic or oligogenic inheritance in seemingly monogenic disorders. We discuss the underlying mechanisms, clinical implications, and the challenges associated with deciphering the contribution of multiple genes in the development and manifestation of such disorders. We present relevant studies and highlight the importance of adopting a broader genetic approach in understanding the complex genetic architecture of these conditions.

Genomic Applications of Biochip Informatics (유전체 발현의 정보학적 분석과 응용)

  • Kim, Ju-Han
    • KOGO NEWS
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2005
  • Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-scale genomic expression data transforms the challenges m biomedical research into ones in bioinformatics. Clinical informatics has long developed technologies to imp개ve biomedical research by integrating experimental and clinical information systems. Biomedical informatics, powered by high throughput techniques, genomic-scale databases and advanced clinical information system, is likely to transform our biomedical understanding forever much the same way that biochemistry did to biology a generation ago. The emergence of healthcare and biomedical informatics revolutionizing both bioinformatics and clinical informatics will eventually change the current practice of medicine, including diagnostics, therapeutics and prognostics.

  • PDF

Clinical significance of sonographic soft markers: A review

  • Kim, Mi Sun;Kang, Sukho;Cho, Hee Young
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Sonographic findings with little or no pathological significance, known as soft markers, are often found in aneuploidy fetuses. After normal screening for the aneuploidy in first trimester, there are no uniform recommendations regarding when to disregard or put on clinical significance in isolated soft markers. Associations between some soft markers and adverse pregnancy outcomes including intrauterine fetal death, preterm birth, fetal growth restriction, and congenital infection have been reported in euploidy fetuses. The present article aims to review recent literatures about the clinical significance of soft markers after normal first trimester combined screening or noninvasive prenatal testing, and propose a simple clinical summary for management of specific soft markers in pregnancies.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

Development of Tetracycline-regulated Adenovirus Expression Vector System

  • Son, Kyung-Hwa;Lee, Seung-Hoon;Kim, Jong-Sik;Choi, Jung-Joo;Lee, Je-Ho
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Recombinant adenovirus vector systems with strong promoters have been used to achieve high level production of recombinant protein. However, this overexpression system cause some problems such as disturbance of cell physiology and increment of cellular toxicity. Here, we showed a tetracycline-regulated adenovirus expression vector system. Our results showed that the expression level of transgene(p-53) was high and easily regulated by tetracycline. In addition, the maximal gene expression level of the tetracycline-controlled gene expression system was higher than that of the wild type CMV promoter system. Therefore, tetracycline-regulated adenoviral vector system could be applicable for regulatory high-level expression of toxic gene. Also, this system will be useful for functional studies and gene therapy.

  • PDF