• Title/Summary/Keyword: climate proxy

Search Result 50, Processing Time 0.021 seconds

Weather and Climatic Environment of Seoul Area in South Korea during 1623~1800, Reconstructed from 'The Daily Records of Royal Secretariat of Joseon Dynasty(承政院日記)' (1623~1800년 서울지역의 기상기후 환경 -'승정원일기'를 토대로-)

  • LEE, Joon Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.4
    • /
    • pp.856-874
    • /
    • 2016
  • This study aims to figure out the weather and climate environment of Seoul area in S. Korea during 1623~1800, which has not been studied so far, by using daily records of weather conditions and meteorological phenomena in the Daily Records of Royal Secretariat of Joseon Dynasty(承政院日記) together with records of abnormal weather conditions and natural disasters in the Annals of the Joseon Dynasty(朝鮮王朝實錄). During 1500~1760 as a period of the Little Ice Age it was generally cold and dry, particularly cool summers of Seoul area. Changes in weather conditions and meteorological phenomena and climate changes appeared prominently at around 1650, 1710, 1770. The annual numbers of rain days and of snow days began to change largely in the 1640s. The rain(and snow) days reduced significantly in the 1710s~1650s, but increased sharply in the 1710s and later. The rain days in summer rapidly increased after the late 1710s, while the snow days greatly reduced after the mid 1770s. The cloudy days around the 1710s greatly reduced in summer, while slightly increased in winter. The hail days increased significantly in the late 1720s and lasted until the 1760s. The fog days began to reduce after 1770 to the fewer days than the climatic normals of 1981~2010. These times are overall consistent with findings of historical climatological cross-checking data and geophysical biological proxy data, accompanied by a trend of relatively enhanced colder and drier of Seoul area.

  • PDF

Numerical Simulation of the Asian Monsoon for the Mid-Holocene Using a Numerical Model (수치모델을 이용한 홀로세 중기의 아시아 몬순순환 변화 연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Park, Yoo-Min;Suk, Bong-Chool
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.289-297
    • /
    • 2005
  • The change in global climate and Asian monsoon patterns during the mid-Holocene, 6000 years before present (6 ka), is simulated by a climate model at spectral truncations of T170 with 18 vertical layers, corresponding to grid-cell sizes of roughly 75km. The present simulation is forced with the observed monthly data of sea surface temperatures, and the specified concentration of atmospheric carbon dioxide, while in the mid-Holocene experiment, orbital parameters such as obliquity, precession, and eccentricity are changed to the 6ka conditions. Under such conditions, the precipitation associated with the summer monsoon is enhanced over a wider zonal band from the Middle East to Southeast Asia, while no significant alteration takes Place in winter. The monsoonal wind also increases over the Arabian Sea, showing the enhanced southwesterly wind during summer and northeasterly wind during winter. Overall, the showing of the Asian monsoon is enhanced during the mid-Holocene, especially in summer, which is consistent with the proxy estimates and other previous model simulations.

Holocene Environmental Change and Human Impact in Hoya Rincon de Parangueo, Guanajuato, Mexico

  • Park, Jung-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.245-254
    • /
    • 2005
  • This paper presents a paleoenvironmental study on Hoya Rincon do Parangueo, a maar lake in Valle de Santiago in Central Mexican Bajio. Maar lake sediments have been widely used for high-resolution reconstruction of paleoenvironment. Many different paleoenvironmental proxy data such as stable isotopes, pollen, sediment chemistry, and dung fungus spore were produced in this study. The pine-oak ratio, stable isotopes, and sediment chemistry help to reveal paleoenviromental changes throughout the whole period covered by sediment materials from this study site. The evidence I found indicates that during ca. 9,500 $\sim$ ca. 8,300 cal yr B.P. there was dry climate; during ca. 8,300 $\sim$ ca. 6,300 cal yr B.P. it was wetter; during ca. 6,300 $\sim$ ca. 4,000 cal yr B.P. drier and cooler; during ca. 4,000 $\sim$ ca. 1,100 cal yr B.P. milder and wetter. The presence of Chupicuaro culture between ca. 2,500 $\sim$ 1,100 cal yr B.P. is implied by the high frequencies of Amaranthaceae and Zea mars. It seems that man left this lake around 1,100 cal yr B.P. due to a dry climate after 1,300 cal yr B.P. Spanish arrival around 400 cal yr B.P. is implied by the fact that fe3 mars reappears and Sporormiella spp. become significant around 120 cm, whereas Poaceae drops sharply.

A coupled model simulation of the Last Glacial Maximum

  • Kim, Seong-Jung
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.11a
    • /
    • pp.37-43
    • /
    • 2004
  • The response of the CCCma coupled climate model to the imposition of LGM conditions is investigated. The global mean SAT and SST decrease by about $10^{\circ}C$ and $5.6^{\circ}C$ in the coupled model. Tropical SST decreases by $6.5^{\circ}C$, whereas CLIMAP reconstructions suggest that the tropics cool by only about $1.7^{\circ}C$, although the larger tropical cooling is consistent with the more recent proxy estimates. With the incorporation of a full ocean component, the coupled model gives a realistic spatial SST pattern, capturing features associated with ocean dynamics that are seen in the CLIMAP reconstructions. The larger decrease of the surface temperature in the model is associated with a reduction in global precipitation rate (about 15%). The tropical Pacific warm pool retreats to the west and a mean La $Ni\tilde{n}a$-like response is simulated with less precipitation over the central Pacific and more in the western tropical Pacific. The more arid ocean climate in the LGM results in an increase in SSS almost everywhere. This is particularly the case in the Arctic Ocean where large SSS increase is due to a decrease in river discharge to the Arctic Ocean associated with the accumulation of snow over the ice sheet, but in the North Atlantic by contrast SSS decreases markedly. This remarkable reduction of SSS in the North Atlantic is attributed to an increase in fresh water supply by an increase in discharges from the Mississippi and Amazon rivers and an increase in P-E over the North Atlantic ocean itself. The discharges increase in association with the wetter LGM climate south of the Laurentide ice sheet and in South America. The fresh water capping of the northern North Atlantic results in a marked reduction of deep convection and consequently a marked weakening of the North Atlantic overturning circulation. In the LGM, the maximum overturning stream function associated with the NADW formation decreases by about 60% relative to the control run, while in the Southern Ocean, oceanic convection is stronger in the LGM due to reduced stratification associated with an increase in SSS and a decrease in SST and the overturning stream function associated with the formation of AABW and the outflow increases substantially.

  • PDF

Paleoclimatic Reconstruction in the Central Great Plains Using Environmental Magnetism and Stable Isotope (자성과 동위원소를 이용한 중부대평원의 고기후 복원)

  • Kyeong Park
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.3
    • /
    • pp.377-394
    • /
    • 1998
  • The magnetic record of loess deposits may be one of the most detailed and useful records of Quatermary climate change on the continents. Stratigraphic variations of magnetic parameters define alternating zones of high and low concentrations of magnetic minerals. All the concentration-sensitive magnetic parameters show an increase within the interstadial Gilman Canyon Formation and interglacial Brady soil and a systematic decrease within the Wisconsinan Peoria loess. The influence of climate change on magnetic records is confirmed by a high correlation between the magnetic parameters and biological proxies. Rock magnetic data appear to be better correlated with temperature-sensitive biological proxies than does a precipitation-sensitive index such as the aridity index derived from opal phytoliths. Simultaneous, higher resolution sampling of magnetic and biological proxies proved to be a better sampling tactic, and enhanced the feasibility of rock magnetic parameters as independent climate proxies.

  • PDF

Application of Bayesian Networks for Flood Risk Analysis (베이지안 네트워크를 적용한 홍수 위험도 분석)

  • SunWoo, Woo-Yeon;Lee, Kil-Seong;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.467-467
    • /
    • 2012
  • As the features of recent flood are spatially concentrated, loss of life and property increase by the impact of climate change. In addition to this the public interest in water control information is increased and socially reasonable justification of water control policy is needed. It is necessary to estimate the flood risk in order to let people know the status of flood control and establish flood control policy. For accurate flood risk analysis, we should consider inter-relation between causal factors of flood damage. Hence, flood risk analysis should be applied to interdependence of the factors selected. The Bayesian networks are ideally suited to assist decision-making in situations where there is uncertainty in the data and where the variables are highly interlinked. In this research, to provide more proper water control information the flood risk analysis is performed using the Bayesian networks to handle uncertainty and dependency among 13 specific proxy variables.

  • PDF

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC (BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석)

  • Kang, Sinkyu;Lim, Jong-Hwan;Kim, Eun-Sook;Cho, Nanghyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.

Assessing Vulnerability to Agricultural Drought of Pumping Stations for Preparing Climate Change (기후변화 대응을 위한 양수장의 농업가뭄 취약성 실태 평가)

  • Jang, Min-Won;Kim, Soo-Jin;Bae, Seung-Jong;Yoo, Seunghwan;Jung, Kyunghun;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.31-40
    • /
    • 2019
  • In order to implement practical alternatives to proactively cope with the agricultural drought, the potential vulnerability of irrigation pumping stations to agricultural drought was quantitatively evaluated. Data for the 124 pumping stations which are correlatable to the three proxy variables, i.e. exposure, sensitivity, and adaptive capacity was collected by the Korea Rural Community Corporation, and then standardized considering distribution of each data set. Finally, the vulnerability index was calculated by multiplying the weights determined by the expert survey. The results showed that the vulnerability index ranged from 0.709 to 0.331 and the most vulnerable pumping stations such as Judam, Wongoo and Jinahn were mostly located in Gyeongbuk province likely because of the climatological characteristics with high temperature and low rainfall around this area. In addition, it was found that the adaptive capacity was a dominant factor comparing to exposure or sensitivity proxy variables in contributing to the vulnerability. It is therefore recommended that more practical alternatives should be employed to effectively reduce the vulnerability of an individual pumping station to agricultural drought. Furthermore, the corresponding data related to adaptive capacity should be systematically organized and managed at a field level to design reliable adaptation strategies.

Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: II. Freezing Risk Index Based on Dormancy Depth as a Proxy for Physiological Tolerance to Freezing Temperature (겨울기온 상승에 따른 복숭아 나무 '장호원황도' 품종의 결과지에 대한 동상해위험 공간분석: II. 휴면심도로 표현한 생리적 내동성에 근거한 동해위험지수)

  • Kim, Jin-Hee;Kim, Soo-Ock;Chung, U-Ran;Yun, Jin-I.;Hwang, Kyu-Hong;Kim, Jung-Bae;Yoon, Ik-Koo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.213-220
    • /
    • 2009
  • In order to predict the risk of freeze injury for 'Changhowon Hwangdo' peach trees, we used the dormancy depth (i.e., the daily chill unit accumulation during the overwintering period) as a proxy for the short-term, physiological tolerance to freezing temperatures. A Chill-days model was employed and its parameters such as base temperature and chilling requirement were optimized for peach trees based on the 12 observational experiments during the 2008-2009 winter. The model predicted the flowering dates much closer to the observations than other models without considering dormancy depth, showing the strength of employing dormancy depth into consideration. To derive empirical equations for calculating the probabilistic freeze risk, the dormancy depth was then combined with the browning ratio and the budburst ratio of frozen peach fruit branches. Given the exact date and the predicted minimum temperature, the equations calculate the probability of freeze damages such as a failure in budburst or tissue browning. This method of employing dormancy depth in addition to freezing temperature would be useful in locating in advance the risky areas of freezing injury for peach trees production under the projected climate change.

A Prospect on the Changes in Short-term Cold Hardiness in "Campbell Early" Grapevine under the Future Warmer Winter in South Korea (남한의 겨울기온 상승 예측에 따른 포도 "캠벨얼리" 품종의 단기 내동성 변화 전망)

  • Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Warming trends during winter seasons in East Asian regions are expected to accelerate in the future according to the climate projection by the Inter-governmental Panel on Climate Change (IPCC). Warmer winters may affect short-term cold hardiness of deciduous fruit trees, and yet phenological observations are scant compared to long-term climate records in the regions. Dormancy depth, which can be estimated by daily temperature, is expected to serve as a reasonable proxy for physiological tolerance of flowering buds to low temperature in winter. In order to delineate the geographical pattern of short-term cold hardiness in grapevines, a selected dormancy depth model was parameterized for "Campbell Early", the major cultivar in South Korea. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HDDTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations and a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and site elevation). To generate relevant datasets for climatological normal years in the future, we combined a 25km-resolution, 2011-2100 temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 scenario) with the 1971-2000 HD-DTM. The dormancy depth model was run with the gridded datasets to estimate geographical pattern of change in the cold-hardiness period (the number of days between endo- and forced dormancy release) across South Korea for the normal years (1971-2000, 2011-2040, 2041-2070, and 2071-2100). Results showed that the cold-hardiness zone with 60 days or longer cold-tolerant period would diminish from 58% of the total land area of South Korea in 1971-2000 to 40% in 2011-2040, 14% in 2041-2070, and less than 3% in 2071-2100. This method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.