• Title/Summary/Keyword: climate monitoring

Search Result 693, Processing Time 0.028 seconds

Implications of European Union's Groundwater Nitrate Management Policies for Korea's Sustainable Groundwater Management (유럽연합의 지하수 질산염 관리정책의 우리나라 지속가능한 지하수관리에의 시사점)

  • Junseop Oh;Jaehoon Choi;Hyunsoo Seo;Ho-Rim Kim;Hyun Tai Ahn;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.271-280
    • /
    • 2024
  • This study examines the European Union (EU)'s policies on managing nitrate contamination in groundwater and provides implications for the future groundwater management in South Korea. Initiated by the 1991 Nitrate Directive, the EU has pursued a multifaceted approach to reduce agricultural nitrate pollution through sustainable ('good') farming practices, regular nitrate level monitoring, and designating Nitrate Vulnerable Zones. Further policy integrations, like the Water Framework Directive and Groundwater Directive, have established comprehensive protection strategies, including the use of pollutant threshold values. Recently, the 2019 Green Deal escalated efforts against nitrates, aligning with broader environmental and climate objectives. This review aims to explore these developments, highlighting key mitigation strategies against nitrate pollution, and providing valuable insights for the future sustainable groundwater nitrate management in South Korea, emphasizing the importance of preventive measures and collaborative efforts to restore and improve groundwater quality.

Relationship between butterfly community and geographic location and ecological traits inhabiting agroecosystems (농업생태계에 서식하는 나비 군집 다양성과 이들에 영향을 주는 지리적 위치 및 생태적 특징과의 관계)

  • Jae-Young Lee;Sei-Woong Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.712-719
    • /
    • 2023
  • This study investigated the diversity of butterfly communities inhabiting agroecosystems and examined the effect of latitude and longitude. The ecological characteristics of butterflies inhabiting rural ecosystems, such as habitat preference and food plant range, were also examined. This study was conducted from 2019 to 2022, selecting 10 locations nationwide and conducting line transect surveys every two weeks for four years, confirming a total of 112 species and 21,901 individuals. There was no difference in the number of species and individuals by region, but there was a clear difference in community composition. The most abundant species in rural ecosystems were Pieris rapae, Polygonia c-aureum, Zizeeria maha, and Colias erate, in that order. There was no significant difference in the number of species and individuals by latitude and longitude, indicating no peninsula effect. Habitat preference showed that butterflies preferring grasslands and forest edges were much more common than those preferring the forest interior, and the food breadth was mostly oligophagous, followed by monophagous and polyphagous. Butterflies inhabiting agroecosystems had ecological characteristics that preferred open spaces such as grasslands and forest edges or relatively diverse foods, due to the similarity of the environmental characteristics of the survey points. Through this study, we believe that continuous monitoring is necessary to determine whether climate change, which is currently underway and habitat change are affecting butterflies in agroecosystems.

Preliminary Monitoring of Mycotoxins for Safety Management of Medicinal Herbs (한약재 안전관리를 위한 곰팡이독소 선제적 모니터링 연구)

  • Lee, Hyun-Kyung;Kim, Ae-Kyeong;Kim, Ouk-Hee;Kim, Sung-Dan;Lee, Young-Ju;Lee, Sea-Ram;Kim, Il-Young;Lee, Jung-Mi;Yu, In-Sil;Jung, Kweon
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • The consumption of herbal medicines has been increasing with growing interest in health. However, due to recent climate change and the complex distribution process of herbal medicines with high import dependence the likelihood of contamination with mycotoxin has been increased. Mycotoxins are emerging as key indicators for ensuring safety of herbal medicines. A total of 498 herbal medicine samples were screened for mycotoxin contamination in this study. Aflatoxin in the herbal medicine samples was extracted by using immunoaffinity column, then the extracted aflatoxin was quantified via high performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) method. The extraction method was verified by linearity, recovery, LOD and LOQ. Aflatoxins were detected in 39/498 samples in an average of $7.670{\mu}g/kg$ ($0.610-77.452{\mu}g/kg$ range). Although safety standards for Corydalis Tuber is not currently available in korea, five of the 39 samples had high concentration of aflatoxins (average of $14.9{\pm}4.1{\mu}g/kg$). In conclusion, it is urgent to establish safety criteria of aflatoxin in Corydalis Tuber. The results of the current study suggest that continuous monitoring is necessary for proactive management of herbal medicine safety.

Characterizing Responses of Biological Trait and Functional Diversity of Benthic Macroinvertebrates to Environmental Variables to Develop Aquatic Ecosystem Health Assessment Index (환경변이에 대한 저서성 대형무척추동물의 생물학적 형질과 기능적 다양성 분석: 수생태계 건강성 평가 관점에서)

  • Moon, Mi Young;Ji, Chang Woo;Lee, Dae-Seong;Lee, Da-Yeong;Hwang, Soon-Jin;Noh, Seong-Yu;Kwak, Ihn-Sil;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The biological indices based on the community structure with species richness and/or abundance are commonly used to assess aquatic ecosystem health. Meanwhile, recently functional traits-based approach is considered in ecosystem health assessment to reflect ecosystem functioning. In this study, we developed a database of biological traits for 136 taxa consisting of major stream insects (Ephemeroptera, Plecoptera, Trichoptera, Coleoptera, and Odonata) collected at Korean streams on the nationwide scale. In addition, we obtained environmental variables in five categories (geography, climate, land use, hydrology and physicochemistry) measured at each sampling site. We evaluated the relationships between community indices based on taxonomic diversity and functional diversity estimated from biological traits. We classified sampling sites based on similarities of their environmental variables and evaluated relations between clusters of sampling sites and diversity indices and biological traits. Our results showed that functional diversity was highly correlated with Shannon diversity index and species richness. The six clusters of sampling sites defined by a hierarchical cluster analysis reflected differences of their environmental variables. Samples in cluster 1 were mostly from high altitude areas, whereas samples in cluster 6 were from lowland areas. Non-metric multidimensional scaling (NMDS) displayed similar patterns with cluster analysis and presented variation of taxonomic diversity and functional diversity. Based on NMDS and community-weighted mean trait value matrix, species in clusters 1-3 displayed the resistance strategy in the life history strategy to the environmental variables whereas species in clusters 4-6 presented the resilience strategy. These results suggest that functional diversity can complement the biological monitoring assessment based on taxonomic diversity and can be used as biological monitoring assessment tool reflecting changes of ecosystem functioning responding to environmental changes.

Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data (MODIS와 TOMS자료를 이용한 2001년 동북아시아 지역의 대기 에어로졸 모니터링)

  • 이권호;홍천상;김영준
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.77-89
    • /
    • 2004
  • The spatial and temporal variations of aerosol optical depth (AOD) over Northeast Asia regions have special importance in the aerosol research for estimation of aerosol radiative forcing parameters and climate change. Aerosol optical and physical properties (AOD and ${\AA}$ngstrom parameter) have been investigated by using Moderate Resolution Imaging Spectroradiometer (MODIS) and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) to estimate aerosol characteristics over the study region during 2001. Additionally, aerosol characteristics over the Korean peninsular during Aerosol Characteristic Experiment in Asia (ACE-Asia) Intensive Observation Period (IOP) have been investigated by using satellite observations. The results showed that the daily-observed aerosol data indicate seasonal variations with relatively higher aerosol loading in the spring and very low during the winter. The typical Asian dust case showed higher AOD (>0.7) with lower Angstrom exponent (<0.5) and higher AI (>0.5) that is mainly due to the composition of coarse particles in the springtime. Mean AOD for 2001 at 4 different places showed 0.65$\pm$0.37 at Beijing, 0.31$\pm$0.19 at Gosan, 0.54$\pm$0.26 at Seoul, and 0.38$\pm$0.19 at Kwangju, respectively. An interesting result was found in the present study that polluted aerosol events with small size dominated-aerosol loading around the Korean peninsular are sometimes observed. The origin of these polluted aerosols was thought to East China. Aerosol distribution from satellite images and trajectory results shows the proof of aerosol transport. Therefore, aerosol monitoring using satellite data is very useful.

Physical Characteristics and Classification of the Ulleung Warm Eddy in the East Sea (Japan Sea) (동해 울릉 난수성 소용돌이의 물리적 특성 및 분류)

  • SHIN, HONG-RYEOL;KIM, INGWON;KIM, DAEHYUK;KIM, CHEOL-HO;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.298-317
    • /
    • 2019
  • The physical characteristics of the Ulleung Warm Eddy (UWE) and its relationship with the East Korea Warm Current (EKWC) were analyzed using the CMEMS (Copernicus Marine Environment Monitoring Service) satellite altimetry data and the CTD data of the National Institute of Fisheries Science (NIFS) near the Ulleung Basin from 1993 to 2017. The distribution of the UWEs coupled with EKWC accounts for 81% of the total number of the UWEs. Only 7% of the total eddies are completely separated from the EKWC. The UWE has the characteristics of high temperature and high salinity water inside of it when it is formed from the EKWC. However, when the UWE is wintering, its internal structure changes greatly. In the winter, surface homogeneous layer of $10^{\circ}C$ and 34.2 psu inside of the UWE is produced by vertical convection from sea-surface cooling, and deepened to a maximum depth of approximately 250 m in early spring. In summer, the UWE changes into a structure with a stratified structure in the upper layer within a depth of 100 m and a homogeneous layer made in winter in the lower layer. 62 UWEs were produced for 25 years from 1993 to 2017. on average, 2.5 UWEs were formed annually, and the average life span was 259 days (approximately 8.6 months). The average size of the UWEs is 98 km in the east-west direction and 109 km in the north-south direction. The average size of UWE using satellite altimetric data is estimated to be 1~25 km smaller than that using water temperature cross-sectional data.

A Study on Termite Monitoring Method Using Magnetic Sensors and IoT(Internet of Things) (자력센서와 IoT(사물인터넷)를 활용한 흰개미 모니터링 방법 연구)

  • Go, Hyeongsun;Choe, Byunghak
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.206-219
    • /
    • 2021
  • The warming of the climate is increasing the damage caused by termites to wooden buildings, cultural properties and houses. A group removal system can be installed around the building to detect and remove termite damage; however, if the site is not visited regularly, every one to two months, you cannot observe whether termites have spread within, and it is difficult to take prompt effective action. In addition, since the system is installed and operated in an exposed state for a long period of time, it may be ineffective or damaged, resulting in a loss of function. Furthermore if the system is installed near a cultural site, it may affect the aesthetic environment of the site. In this study, we created a detection system that uses wood, cellulose, magnets, and magnetic sensors to determine whether termites have entered the area. The data was then transferred to a low power LoRa Network which displayed the results without the necessity of visiting the site. The wood was made in the shape of a pile, and holes were made from the top to the bottom to make it easier for termites to enter and produce a cellulose sample. The cellulose sample was made in a cylindrical shape with a magnet wrapped in cellulose and inserted into the top of a hole in the wood. Then, the upper part of the wood pile was covered with a stopper to prevent foreign matter from entering. It also served to block external factors such as light and rainfall, and to create an environment where termites could add cellulose samples. When the cellulose was added by the termites, a space was created around the magnet, causing the magnet to either fall or tilt. The magnetic sensor inside the stopper was fixed on the top of the cellulose sample and measured the change in the distance between the magnet and the sensor according to the movement of the magnet. In outdoor experiments, 11 cellulose samples were inserted into the wood detection system and the termite inflow was confirmed through the movement of the magnet without visiting the site within 5 to 17 days. When making further improvements to the function and operation of the system it in the future, it is possible to confirm that termites have invaded without visiting the site. Then it is also possible to reduce damage and fruiting due to product exposure, and which would improve the condition and appearance of cultural properties.

Weekly Variation of Phytoplankton Communities in the Inner Bay of Yeong-do, Busan (부산 영도 내만에서 식물플랑크톤 군집의 주간 변동 특성)

  • YANG, WONSEOK;CHOI, DONG HAN;WON, JONGSEOK;KIM, JIHOON;HYUN, MYUNG JIN;LEE, HAEUN;LEE, YEONJUNG;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.356-368
    • /
    • 2021
  • To understand the temporal variation of phytoplankton communities in a coastal area, the biomass and diversity were weekly investigated in the inner bay of Yeong-do, Busan. In the study area, chlorophyll a concentration ranged from 0.43~7.58 mg m-3 during the study, indicating the study area was in mesotrophic or eutrophic status. The fractions of chlorophyll a occupied by large phytoplankton (> 3 ㎛ diameter) exhibited an average of 80% of total chlorophyll a in this study. Among the large phytoplankton, while Bacillariophyta was the most dominant in spring and summer, Cryptophyceae prevailed in the fall and winter. On the contrary, in the picophytoplankton community less than 3 ㎛ in diameter, Mamiellophyceae was the most dominant in most seasons, Cryptophyceae was relatively high with an average of 17.7 ± 17.6% throughout the year, but seasonal variations were large. Dinophyceae rarely occupied a higher fraction up to 60.4% of the picophytoplankton community. By weekly monitoring at a coastal station for 13 months, it is suggested that phytoplankton communities in coastal waters could be changed on a short time scale. If data are steadily accumulated at the time-series monitoring site for a long time, these will provide important data for understanding the long-term dynamics of phytoplankton as well as the impact of climate and environmental changes.

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.