• 제목/요약/키워드: climate model

검색결과 2,517건 처리시간 0.028초

저탄소 경로 모형을 활용한 2050년 한국의 온실가스 감축 시나리오 비교 분석 (Comparative Analysis of Scenarios for Reducing GHG Emissions in Korea by 2050 Using the Low Carbon Path Calculator)

  • 박년배;유정화;조미현;윤성권;전의찬
    • 한국대기환경학회지
    • /
    • 제28권5호
    • /
    • pp.556-570
    • /
    • 2012
  • The Low Carbon Path Calculator is an excel-based model to project greenhouse gas emissions from 2009 to 2050, which is based on the 2050 Pathways Calculator developed by the UK Department of Energy and Climate Change (DECC). Scenarios are developed to reduce GHG emissions in Korea at 50% based on 2005 levels by 2050 using a Low Carbon Path Calculator. They were classified in four different cases, which are high renewable, high nuclear, high CCS and mixed option scenarios. The objectives of this study are to compare scenarios in terms of GHG emissions, final energy, primary energy and electricity generation and examine the usefulness of that model in terms of identifying pathways towards a low carbon emission society. This model will enhance the understanding of the pathways toward a low carbon society and the level of the climate change policy for policy makers, stakeholders, and the public. This study can be considered as a reference for developing strategies in reducing GHG emissions in the long term.

Evaluation of climate change on the rice productivity in South Korea using crop growth simulation model

  • Lee, Chung-Kuen;Kim, JunHwan;Shon, Jiyoung;Yang, Won-Ha
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2011년도 학술발표회
    • /
    • pp.16-18
    • /
    • 2011
  • Evaluation of climate change on the rice productivity was conducted using crop growth simulation model, where Odae, Hwaseong, Ilpum were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and climate change scenario 'A1B' was applied to weather data for future climate change at 57sites. When cropping season was fixed, rice yield decreased by 4~35% as climate change which was caused by poor filled grain ratio with high temperature and low irradiation during grain-filling. When cropping season was changed, rice yield decreased by only 0~5% as climate change which was caused poor filled grain ratio with low irradiation during grain-filling period. However, this irradiation decline was less than when cropping season was fixed. Therefore, we need to develop rice cultivars resistant to low irradiation which can maintain high filled grain ratio under poor irradiation condition, and late maturity rice cultivars whose growing period is longer than the present medium-late maturity type.

  • PDF

CMIP5 모형에서 나타난 겨울철 동아시아와 북태평양 지역의 엘니뇨 원격상관의 미래변화 (Future Changes in Atmosphere Teleconnection over East Asia and North Pacific associated with ENSO in CMIP5 Models)

  • 김선용;국종성
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.389-397
    • /
    • 2015
  • The changes in the teleconnection associated with El Nin?o-Southern Oscillation (ENSO) over the East Asia and North Pacific under greenhouse warming are analyzed herein by comparing the Historical run (1970/1971~1999/2000) and the Representative Concentration Pathway (RCP) 4.5 run with 31 climate models, participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). It is found that CMIP5 models have diverse systematic errors in simulating the ENSO teleconnection pattern from model to model. Therefore, we select 21 models based on the models' performance in simulating teleconnection pattern in the present climate. It is shown that CMIP5 models tend to project an overall weaker teleconnection pattern associated with ENSO over East Asia in the future climate than that in the present climate. It can be also noted that the cyclonic flow over the North Pacific is weakened and shifted eastward. However, uncertainties for the ENSO teleconnection changes still exist, suggesting that much consistent agreements on this future teleconnections associated with ENSO should be taken in a further study.

세계화.기후변화시대의 지역 경쟁력 요인 분석 (Determinants of the Regional Competitiveness in the Era of the Globalization and the Climate Change)

  • 노용식;이희연
    • 한국경제지리학회지
    • /
    • 제15권4호
    • /
    • pp.601-614
    • /
    • 2012
  • 본 논문은 세계화 기후변화시대에 지역 경쟁력에 영향을 미치는 요인을 추정하고, 요인들의 상대적 중요성을 분석하는 데 목적을 두었다. 2001~2010년 동안 16개 광역시 도의 균형 패널 데이터를 구축하여 패널분석을 수행하였다. 1인당 지역민총소득을 종속변수로 하고 경쟁력 기반요인, 경제적 생산요인, 기후변화 적응요인을 설명변수로 하는 패널모델을 구축하였다. 본 연구에서는 모델 1(전형적인 지역 경쟁력 모델)과 기후변화 적응요인을 추가시킨 모델 2를 비교하였다. 실증분석 결과 종속변수에 가장 영향력이 높은 요인으로는 지식기반산업 비율과 인적자본으로 나타났으며, 에너지 비효율성이 증가하면 지역 경쟁력이 감소하는 것으로 추정되었다. 또한 모델 1에 비해 모델 2에서는 지역의 개방성과 기술혁신자본의 영향력이 상대적으로 더 증가하는 것으로 나타났다. 본 연구 결과를 통해 향후 세계화 기후변화시대에 지역 경쟁력을 강화시키는데 필요한 정책적 시사점을 제공하였다.

  • PDF

기후변화 시나리오에 따른 건물부분의 영향 (Impact of climate change scenarios in the Building Sector)

  • 이관호
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.64-69
    • /
    • 2013
  • According to the Fourth Assessment Report of Intergovernmental Panel on Climate Change(IPCC) Working Group III, climate change is already in progress around the world, and it is necessary to execute mitigation in order to minimize adverse impacts. This paper suggests future climate change needs, employing IPCC Special Report on Emissions Scenarios(SRES) to predict temperature rises over the next 100 years. This information can be used to develop sustainable architecture applications for energy efficient buildings and renewable energy. Such climate changes could also affected the present supplies of renewable energy sources. This paper discusses one recent Fourth Assessment Report of IPCC (Mitigation of Climate Change) and the Hadley Centre climate simulation of relevant data series for South Korea. Result of this research may improve consistency and reliability of simulation weather data or climate change in order to take advantage of SRES and PRECIS QUMP. It is expected that these calculated test reference years will be useful to the designers of solar energy systems, as well as those who need daily solar radiation data for South Korea. Also, those results may contribute zero carbon and design of sustainable architecture establishing future typical weather data that should be gone ahead to energy efficient building design using renewable energy systems.

APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가 (Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model)

  • 최순군;조재필;정재학;김민경;엽소진;조세라;오수 당콰 에릭;방정환
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.1-16
    • /
    • 2021
  • Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.

Simulation of Indian Summer Monsoon Rainfall and Circulations with Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • 한국제4기학회:학술대회논문집
    • /
    • 한국제4기학회 2004년도 하계학술대회
    • /
    • pp.24-25
    • /
    • 2004
  • It is well known that there is an inverse relationship between the strength of Indian summer monsoon Rainfall (ISMR) and extent of Eurasian snow cover/depth in the preceding season. Tibetan snow cover/depth also affects the Asian monsoon rainy season largely. The positive correlation between Tibetan sensible heat flux and southeast Asian rainfall suggest an inverse relationship between Tibetan snow cover and southeast Asian rainfall. Developments in Regional Climate Models suggest that the effect of Tibetan snow on the ISMR can be well studied by Limited Area Models (LAMs). LAMs are used for regional climate studies and operational weather forecast of several hours to 3 days in future. The Eta model developed by the National Center for Environmental Prediction (NCEP), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Regional Climate Model (RegCM) have been used for weather prediction as well as for the study of present-day climate and variability over different parts of the world. Regional Climate Model (RegCM3) has been widely . used for various mesoscale studies. However, it has not been tested to study the characteristics of circulation features and associated rainfall over India so far. In the present study, Regional Climate Model (RegCM-3) has been integrated from 1 st April to 30th September for the years 1993-1996 and monthly mean monsoon circulation features and rainfall simulated by the model at 55km resolution have been studied for the Indian summer monsoon season. Characteristics of wind at 850hPa and 200hPa, temperature at 500hPa, surface pressure and rainfall simulated by the model have been examined for two convective schemes such as Kuo and Grell with Arakawa-Schubert as the closure scheme, Model simulated monsoon circulation features have been compared with those of NCEP/NCAR reanalyzed fields and the rainfall with those of India Meteorological Department (IMD) observational rainfall datasets, Comparisons of wind and temperature fields show that Grell scheme is closer to the NCEP/NCAR reanalysis, The influence of Tibetan snowdepth in spring season on the summer monsoon circulation features and subsequent rainfall over India have been examined. For such sensitivity experiment, NIMBUS-7 SMMR snowdepth data have been used as a boundary condition in the RegCM3, Model simulation indicates that ISMR is reduced by 30% when 10cm of snow has been introduced over Tibetan region in the month of previous April. The existence of Tibetan snow in RegCM3 also indicates weak lower level monsoon westerlies and upper level easterlies.

  • PDF

FAO-AquaCrop을 이용한 기후변화가 벼 증발산량 및 수확량에 미치는 영향 모의 (Simulating Evapotranspiration and Yield Responses of Rice to Climate Change using FAO-AquaCrop)

  • 정상옥
    • 한국농공학회논문집
    • /
    • 제52권3호
    • /
    • pp.57-64
    • /
    • 2010
  • The impacts of climate change on yield and evapotranspiration of rice have been modeled using AquaCrop model developed by Food and Agriculture Organization (FAO). Climate change scenario downscaled by Mesoscale Model 5 (MM5) regional model from ECHO-G General Circulation Model (GCM) outputs by Korea Meteorological Research Institute (METRI) was used in this study. Monthly average climate data for baseline (1971-2000) and three time periods (2020s, 2050s and 2080s) were used as inputs to the AquaCrop model. The results showed that the evapotranspiration after transplanting was projected to increase by 4 % (2020s), 8 % (2050s) and 14 % (2080s), respectively, from the baseline value of 464 mm. The potential rice yield was 6.4 t/ha and water productivity was 1.4 kg/$m^3$ for the baseline. The potential rice yield was projected to increase by 23 % (2020s), 55 % (2050s), and 98 % (2080s), respectively, by the increased photosynthesis along with the $CO_2$ concentration increases. The water productivity was projected to increase by 19 % (2020s), 44 % (2050s), and 75 % (2080s), respectively.

기상방재 대책수립을 위한 아시아지역 기상모형에 필요한 지표경계조건의 구축 (Construction of Surface Boundary Conditions for the Regional Climate Model in Asia Used for the Prevention of Disasters Caused by Climate Changes)

  • 최현일
    • 한국방재학회 논문집
    • /
    • 제7권5호
    • /
    • pp.73-78
    • /
    • 2007
  • 전세계적으로 지구온난화와 기상이변으로 인한 인명과 재산의 피해는 해마다 증가하고 있으며, 최근 한반도의 기후와 기온은 지구평균치보다 큰 변화가 일어나고 있다. 지구전체기상모형(Global Climate Model 또는General Circulation Model GEM)보다 고해상도의 모의가 가능한 지역기상모형(Regional Climate Model RCM)은 기후 변동, 변화 및 그 영향과 관련된 여러 문제들을 파악하는데 사용된다. 이러한 기상모형을 위한 기존 입력자료들의 가용성, 정확도, 그리고 일관성의 결여로 인하여 제한되고 있는 모형의 예측능력 향상을 위해 새로운 지표경계조건들(Surface Boundary Condition SBC)의 필요성이 요구되고 있다. 따라서, 정확도 높은 측정자료의 확보와 과학적 근거에 의한 자료선택 및 결측보정이 새로운 지표경계조건 구축에 선결조건이 되어야 한다. 이 연구의 목적은, 기상방재 수립을 위한 아시아 지역기상모형에 필요한 정확도 높은 지표경계조건 자료를 구축하는데 있다. 산정된 지표경계조건들은 30km 크기의 격자망으로 구성된 한반도를 포함한 아시아 지역기상모형의 계산망에 대해 구축되어, 이 지역의 기상 및 수문 예측모의를 위한 다른 분포형모형들의 입력자료로도 사용이 가능하다.

지역 기후 모형을 이용한 한반도 강수 모의에서 수평 해상도의 영향 (Impact of Horizontal Resolution of Regional Climate Model on Precipitation Simulation over the Korean Peninsula)

  • 이영호;차동현;이동규
    • 대기
    • /
    • 제18권4호
    • /
    • pp.387-395
    • /
    • 2008
  • The impact of horizontal resolution on a regional climate model was investigated by simulating precipitation over the Korean Peninsula. As a regional climate model, the SNURCM(Seoul National University Regional Climate Model) has 21 sigma layers and includes the NCAR CLM(National Center for Atmospheric Research Community Land Model) for land-surface model, the Grell scheme for cumulus convection, the Simple Ice scheme for explicit moisture, and the MRF(Medium-Range Forecast) scheme for PBL(Planetary Boundary Layer) processing. The SNURCM was performed with 20 km resolution for Korea and 60 km resolution for East Asia during a 20-year period (1980-1999). Although the SNURCM systematically underestimated precipitation over the Korean Peninsula, the increase of model resolution simulated more precipitation in the southern region of the Korean Peninsula, and a more accurate distribution of precipitation by reflecting the effect of topography. The increase of precipitation was produced by more detailed terrain data which has a 10 minute terrain in the 20 km resolution model compared to the 30 minute terrain in the 60 km resolution model. The increase in model resolution and more detailed terrain data played an important role in generating more precipitation over the Korean Peninsula. While the high resolution model with the same terrain data resulted in increasing of precipitation over the Korean Peninsula including the adjoining sea, the difference of the terrain data resolution only influenced the precipitation distribution of the mountainous area by increasing the amount of non-convective rain. In conclusion, the regional climate model (SNURCM) with higher resolution simulated more precipitation over the Korean Peninsula by reducing the systematic underestimation of precipitation over the Korean Peninsula.