• Title/Summary/Keyword: climate map

Search Result 344, Processing Time 0.024 seconds

Status of Agrometeorology Monitoring Network for Weather Risk Management: Focused on RDA of Korea (위험기상 대응 농업기상관측 네트워크의 현황: 농촌진흥청을 중심으로)

  • Shim, Kyo Moon;Kim, Yong Seok;Jeong, Myung Pyo;Choi, In Tae;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • Agro-Meteorological Information Service (AMIS) network has been established since 2001 by Rural Development Administration (RDA) in Korea, and has provided access to current and historical weather data with useful information for agricultural activities. AMIS network includes 158 automated weather stations located mostly in farm region, with planning to increase by 200 stations until 2017. Agrometeorological information is disseminated via the web site (http://weather.rda.go.kr) to growers, researchers, and extension service officials. Our services will give enhanced information from observation data (temperature, precipitation, etc.) to application information, such as drought index, agro-climatic map, and early warning service. AMIS network of RDA will help the implementation of an early warning service for weather risk management.

Forest Damage Detection Using Daily Normal Vegetation Index Based on Time Series LANDSAT Images (시계열 위성영상 기반 평년 식생지수 추정을 통한 산림생태계 피해 탐지 기법)

  • Kim, Eun-sook;Lee, Bora;Lim, Jong-hwan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1133-1148
    • /
    • 2019
  • Tree growth and vitality in forest shows seasonal changes. So, in order to detect forest damage accurately, we have to use satellite images before and after damages taken at the same season. However, temporal resolution of high or medium resolution images is very low,so it is not easy to acquire satellite images of the same seasons. Therefore, in this study, we estimated spectral information of the same DOY using time-series Landsat images and used the estimates as reference values to assess forest damages. The study site is Hwasun, Jeollanam-do, where forest damage occurred due to hail and drought in 2017. Time-series vegetation index (NDVI, EVI, NDMI) maps were produced using all Landsat 8 images taken in the past 3 years. Daily normal vegetation index maps were produced through cloud removal and data interpolation processes. We analyzed the difference of daily normal vegetation index value before damage event and vegetation index value after event at the same DOY, and applied the criteria of forest damage. Finally, forest damage map based on daily normal vegetation index was produced. Forest damage map based on Landsat images could detect better subtle changes of vegetation vitality than the existing map based on UAV images. In the extreme damage areas, forest damage map based on NDMI using the SWIR band showed similar results to the existing forest damage map. The daily normal vegetation index map can used to detect forest damage more rapidly and accurately.

Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction (여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

Development of the Program for Operating & Managing Digital Forest Cover Type Map Using SDE(Revision 1.0) (공간DB엔진(SDE)을 이용한 수치임상도 운영·관리 프로그램 개발(Revision 1.0))

  • You, Byung-Oh;Seo, Su-An;Ryu, Joo-Hyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • This program was developed to operate and manage the massive digital forest cover type map using SDE(spatial database engine) in order to solve the problems of the analogue mapping system, mapping process and managing vast amounts of data. It was established the standardization process by performing the several functions of application related to the spatial DB search, mapping history and progress control, modification and inspection of the topology error, approval and reject of those maps. It can be possible to generate the effective mapping and distribute maps to the public service. It is expected that the results will be able to reduce time-cost.

Development of FAPIS(Forest Aerial Photograph Interpretation System) for Digital Forest Cover Type Mapping(Version 1.0) (수치임상도 제작을 위한 산림항공사진 영상판독시스템 개발(Version 1.0))

  • You, Byung-Oh;Kim, Chong-Chan;Kim, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The purpose of the FAPIS(Forest Aerial Photograph Interpretation System) development is to increase accuracy and efficiency of the digital forest cover type mapping for improving conventional analog-based mapping procedures by optimizing work-flow and mapping technology. The database models including digital forest cover type map, aerial photograph, and topographic map were designed for use in this system construction. The interface configured concisely to connect with functions such as search engine, display control, conversion to stereo interpretation mode, modification tools, automation of print layout and database models. It is expected that the standardization methodology based on this system can be applied and extended in making all kinds of digital thematic maps, providing decision-making and information of forest resources.

Estimating Stand Volume Pinus densiflora Forest Based on Climate Change Scenario in Korea (미래 기후변화 시나리오에 따른 우리나라 소나무 임분의 재적 추정)

  • Kim, Moonil;Lee, Woo-Kyun;Guishan, Cui;Nam, Kijun;Yu, Hangnan;Choi, Sol-E;Kim, Chang-Gil;Gwon, Tae-Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.105-112
    • /
    • 2014
  • The main purpose of this study is to measure spatio-temporal variation of forest tree volume based on the RCP(Representative Concentration Pathway) 8.5 scenario, targeting on Pinus densiflora forests which is the main tree species in South Korea. To estimate nationwide scale, $5^{th}$ forest type map and National Forest Inventory data were used. Also, to reflect the impact of change in place and climate on growth of forest trees, growth model reflecting the climate and topography features were applied. The result of the model validation, which compared the result of the model with the forest statistics of different cities and provinces, showed a high suitability. Considering the continuous climate change, volume of Pinus densiflora forest is predicted to increase from $131m^3/ha$ at present to $212.42m^3/ha$ in the year of 2050. If the climate maintains as the present, volume is predicted to increase to $221.92m^3/ha$. With the climate change, it is predicted that most of the region, except for some of the alpine region, will have a decrease in growth rate of Pinus densiflora forest. The growth rate of Pinus densiflora forest will have a greater decline, especially in the coastal area and the southern area. With the result of this study, it will be possible to quantify the effect of climate change on the growth of Pinus densiflora forest according to spatio-temporal is possible. The result of the study can be useful in establishing the forest management practices, considering the adaptation of climate change.

Past, Present and Future of Geospatial Scheme based on Topo-Climatic Model and Digital Climate Map (소기후모형과 전자기후도를 기반으로 한 지리공간 도식의 과거, 현재 그리고 미래)

  • Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.268-279
    • /
    • 2021
  • The geospatial schemes based on topo-climatology have been developed to produce digital climate maps at a site-specific scale. Their development processes are reviewed here to derive the needs for new schemes in the future. Agricultural and forestry villages in Korea are characterized by complexity and diversity in topography, which results in considerably large spatial variations in weather and climate over a small area. Hence, the data collected at a mesoscale through the Automated Synoptic Observing System (ASOS) operated by the Korea Meteorological Administration (KMA) are of limited use. The geospatial schemes have been developed to estimate climate conditions at a local scale, e.g., 30 m, lowering the barriers to deal with the processes associated with production in agricultural and forestry industries. Rapid enhancement of computing technologies allows for near real-time production of climate information at a high-resolution even in small catchment areas and the application to future climate change scenarios. Recent establishment of the early warning service for agricultural weather disasters can provide growth progress and disaster forecasts for cultivated crops on a farm basis. The early warning system is being expanded worldwide, requiring further advancement in geospatial schemes and digital climate mapping.

The Study on Establishment of the Urban Atmospheric Environment Map for Analysis of Atmospheric Environment in Busan Metropolitan City (부산광역시 대기환경 파악에 활용가능한 도시대기환경지도 작성에 관한 연구)

  • Kim, Min-Kyoung;Jung, Woo-Sik;Lee, Hwa Woon
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.807-817
    • /
    • 2015
  • In this study the urban atmospheric environment map in Busan was made and it consist of the atmospheric environment element map and the atmospheric environment analysis map. The atmospheric environment element map covered the topography, the urban climate, the air pollutant emission, ozone and PM10 concentrations in Busan and the atmospheric environment analysis map included the thermal environment and the wind flow by using WRF meteorological numerical simulation. The meteorological elements from 2007 to 2011 in Busan were used in this study. As a result, in the center of Busan and Buk-gu along to the Nakdong river was the temperature high. To analyze the air flow of Busan 3 clusters depending on the wind direction were extracted with the cluster analysis. The results of the analysis on the detailed wind field of each cluster showed that the weak ventilation could be happened locally at the specific meteorological condition.

PREPARATION OF CARBON DIOXIDE ABSORPTION MAP USING KOMPSAT-2 IMAGERY

  • Kim, So-Ra;Lee, Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.200-203
    • /
    • 2008
  • The objective of this study is to produce the $CO_2$ (carbon dioxide) absorption map using KOMPSAT-2 imagery. For estimating the amount of $CO_2$ absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC (Intergovernmental Panel on Climate Change) guideline, was used to convert the stand biomass into the amount of $CO_2$ absorption. Thereafter, the KOMPSAT-2 imagery was classified with the SBC (segment based classification) method in order to quantify $CO_2$ absorption by tree species. As a result, the map of $CO_2$ absorption was produced and the amount of $CO_2$ absorption was estimated by tree species.

  • PDF