• Title/Summary/Keyword: climate change scenarios

Search Result 680, Processing Time 0.021 seconds

Evaluating Water Supply Capacity of Embankment Raised Reservoir on Climate Change (기후변화에 따른 둑높임 저수지의 용수공급능력 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • An embankment raising project on 113 agricultural reservoirs in Korea was implemented in 2009 to increase water supply capacity for agricultural water and instream uses. This study evaluated the future water supply capacity of the Imgo reservoir at which the agricultural reservoir embankment raising project was completed, considering climate change scenarios. The height of the embankment of the reservoir was increased by 4.5 m, thereby increasing its total storage from 1,657.0 thousand to 3,179.5 thousand cubic meters. To simulate the reservoir water storage with respect to climate changes, two climate change scenarios, namely, RCP 4.5 and RCP 8.5 (in which greenhouse gas reduction policy was executed and not executed, respectively) were applied with bias correction for reflecting the climate characteristics of the target basin. The analysis result of the agricultural water supply capacity in the future, after the agricultural reservoir embankment raising project is implemented, revealed that the water supply reliability and the agricultural water supply increased, regardless of the climate change scenarios. By simulating the reservoir water storage considering the instream flow post completion of the embankment raising project, it was found that water shortage in the reservoir in the future is not likely to occur when it is supplied with an appropriate instream flow. The range of instream flow tends to decrease over time under RCP 8.5, in which the greenhouse gas reduction policy was not executed, and the restoration of reservoir storage was lower in this scenario than in RCP 4.5, in which greenhouse gas reduction policy was executed.

An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow (낙동강 유역 환경유량에 대한 기후변화의 영향 분석)

  • Lee, A Yeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.273-285
    • /
    • 2011
  • This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.

Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model (통계적 상세화 모형을 활용한 한반도 1km 농업용 전자기후도 제작)

  • Jina Hur;Jae-Pil Cho;Kyo-Moon Shim;Sera Jo;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.404-414
    • /
    • 2023
  • In this study, digital climate maps with high-resolution (1km, daily) for the period of 1981 to 2020 were produced for the use as reference data within the procedures for statistical downscaling of climate change scenarios. Grid data for the six climate variables including maximum temperature, minimum temperature, precipitation, wind speed, relative humidity, solar radiation was created over Korean Peninsula using statistical downscaling model, so-called IGISRM (Improved GIS-based Regression Model), using global reanalysis data and in-situ observation. The digital climate data reflects topographical effects well in terms of representing general behaviors of observation. In terms of Correlation Coefficient, Slope of scatter plot, and Normalized Root Mean Square Error, temperature-related variables showed satisfactory performance while the other variables showed relatively lower reproducibility performance. These digital climate maps based on observation will be used to downscale future climate change scenario data as well as to get the information of gridded agricultural weather data over the whole Korean Peninsula including North Korea.

Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios (SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가)

  • Kim, Siho;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

Estimation of Inflow into Namgang Dam according to Climate Change using SWAT Model (SWAT 모형을 이용한 기후변화에 따른 남강댐 유입량 추정)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.9-18
    • /
    • 2017
  • The objective of this study was to estimate the climate change impact on inflow to Namgang Dam using SWAT (Soil and Water Assessment Tool) model. The SWAT model was calibrated and validated using observed flow data from 2003 to 2014 for the study watershed. The $R^2$ (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. Calibration results showed that the annual mean inflow were within ${\pm}5%$ error compared to the observed. $R^2$ were ranged 0.61~0.87, RMSE were 1.37~7.00 mm/day, NSE were 0.47~0.83, and RMAE were 0.25~0.73 mm/day for daily runoff, respectively. Climate change scenarios were obtained from the HadGEM3-RA. The quantile mapping method was adopted to correct bias that is inherent in the climate change scenarios. Based on the climate change scenarios, calibrated SWAT model simulates the future inflow and evapotranspiration for the study watershed. The expected future inflow to Namgang dam using RCP 4.5 is increasing by 4.8 % and RCP 8.5 is increasing by 19.0 %, respectively. The expected future evapotranspiration for Namgang dam watershed using RCP 4.5 is decreasing by 6.7 % and RCP 8.5 is decreasing by 0.7 %, respectively.

Vertical Distribution of Temperature and Tropopause Height Changes in Future Projections using HadGEM2-AO Climate Model (HadGEM2-AO를 이용한 연직기온 분포와 대류권계면 높이 변화 미래전망)

  • Lee, Jaeho;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • We present here the future changes in vertical distribution of temperature and tropopause height using the HadGEM2-AO climate model forced with Representative Concentration Pathways (RCPs) scenarios. Projected changes during the 21st century are shown as differences from the baseline period (1971~2000) for global vertical distribution of temperature and tropopause height. All RCP scenarios show warming throughout the troposphere and cooling in the stratosphere with amplified warming over the lower troposphere in the Northern Hemisphere high latitudes. Upper troposphere warming reaches a maximum in the tropics at the 300 hPa level associated with lapse-rate feedback. Also, the cooling in the stratosphere and the warming in the troposphere raises the height of the tropopause.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.

Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models (전이함수모형과 일기 발생모형을 이용한 유역규모 기후변화시나리오의 작성)

  • Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.345-363
    • /
    • 2003
  • From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the 'downscaling' techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.

Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia (탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향)

  • Youn-Ah Kim;Jung Choi;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.505-517
    • /
    • 2023
  • This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.

Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model (RCP 배출 시나리오와 SWAT 모형을 이용한 기후변화가 용담댐 유역의 수문요소에 미치는 영향 평가)

  • Park, Jong-Yoom;Jung, Hyuk;Jang, Cheol-Hee;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.19-29
    • /
    • 2014
  • This study was to evaluate the potential climate change impact on watershed hydrological components of evapotranspiration, surface runoff, lateral flow, return flow, and streamflow using Soil and Water Assessment Tool (SWAT). For Yongdam dam watershed (930 $km^2$), the SWAT model was calibrated for five years (2002-2006) and validated for three years (2004-2006) using daily streamflow data at three locations and daily soil moisture data at five locations. The Nash-Sutcliffe model efficiency (NSE) and coefficient of determination ($R^2$) were 0.43-0.67 and 0.48-0.70 for streamflow, and 0.16-0.65 and 0.27-0.76 for soil moisture, respectively. For future evaluation, the HadGEM3-RA climate data by Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios were adopted. The biased future data were corrected using 30 years (1982-2011, baseline period) of ground weather data. The HadGEM3-RA 2080s (2060-2099) temperature and precipitation showed increase of $+4.7^{\circ}C$ and +22.5 %, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, surface runoff, baseflow, and streamflow showed changes of +11.8 %, +36.8 %, +20.5 %, and +29.2 %, respectively. Overall, the future hydrologic results by RCP emission scenarios showed increase patterns due to the overall increase of future temperature and precipitation.