• 제목/요약/키워드: cleaved PARP

검색결과 112건 처리시간 0.025초

노랑붓꽃에서 분리된 Iridin의 독소루비신 유도 HK-2 세포 괴사에 대한 역할 및 암세포에 대한 작용 (Role of Iridin Isolated from Iris koreana Nakai on Doxorubicin-induced Necrosis in HK-2 Cells, and Effect on Cancer Cells)

  • 노종현;이기호;정호경;이무진;장지훈;심미옥;정자균;정다은;조현우
    • 한국자원식물학회지
    • /
    • 제31권2호
    • /
    • pp.95-101
    • /
    • 2018
  • 노랑붓꽃에서 분리된 iridin의 doxorubicin으로 유도된 신장 세포괴사 모델에 대한 보호 효과 및 암세포에 대한 작용을 알아보기위해 연구를 수행하였다. Iridin 단일 처리로는 신장근위세뇨관 세포주에 대해 독성을 나타내지 않았으며, $80{\mu}M$의 농도에서 $10{\mu}M$ doxorubicin 처리에 의한 세포사멸을 $94.6{\pm}2.6%$까지 회복시켰다. 또한 $80{\mu}M$ iridin 처리는 $10{\mu}M$ doxorubicin 처리에 의해 증가된 cleaved PARP1과 cleaved caspase-3를 포함하는 세포사멸 신호전달을 차단하였을 뿐만 아니라 DNA fragmentation, necrotic cell death 및 mitochondrial dysfunction을 개선시켰다. 마지막으로 암세포에서 iridin의 효과를 확인해본 결과, 폐암세포주인 NCI-H1229 세포에서 doxorubicin의 항암효과를 억제하는 경향이 나타났지만 대장암 세포주인 HCT-116 세포주에서는 암세포에 대한 성장억제를 방해하지 않는 것으로 확인되었다. 따라서 폐암세포에서 doxorubicin과 iridin의 병용처리는 힘들다고 판단되고, In vivo 수준에서 신장 독성 및 대장암 관련 실험을 통해 iridin의 역할을 추가적으로 확인해야한다고 생각된다.

후추의 주요 성분인 Piperine의 대장암세포 세포사멸 유도 효과 (Induction of Apoptosis in HT-29 Human Colon Cancer Cells by the Pepper Component Piperine)

  • 김은지;박희숙;신민정;신현경;윤정한
    • 한국식품영양과학회지
    • /
    • 제38권4호
    • /
    • pp.442-450
    • /
    • 2009
  • 후추의 주요 성분인 piperine은 다양한 생리활성을 나타내고 있으며, 특히 암예방 효과가 있는 것으로 생각되고 있다. 본 연구에서는 piperine의 항암 효과를 밝히기 위해 piperine이 인간의 대장에서 유래한 암세포인 HT-29 세포의 증식에 미치는 영향과 작용 기전을 연구하였다. Piperine을 HT-29 세포 배양액에 여러 농도($0{\sim}40{\mu}M$)로 첨가하여 세포를 배양한 경우 piperine 처리 농도가 증가할수록 세포의 증식이 감소하였고, 세포사멸이 증가하였다. 이는 piperine이 HT-29 세포의 세포사멸을 유도하여 세포 증식을 억제함을 제시한다. Piperine의 세포사멸 기전을 조사하기 위해 세포사멸 조절인자의 변화를 조사하였다. Piperine에 의해 anti-apoptotic Bcl-2 family 단백질인 Bcl-2와 Mcl-1 단백질 수준은 감소하였고, BH3-only 단백질인 Bid 단백질 수준은 감소하였으나, Bik 단백질 수준은 증가하였다. 또한 piperine에 의해 미토콘드리아 막의 투과성이 증가하였고, cytochrome c의 세포질로의 방출이 증가하였다. 또한 piperine 처리에 의해 caspase의 활성형인 cleaved caspase-8, -9, -7, -3 단백질 수준이 증가하였고, PARP의 불활성형인 cleaved PARP 수준이 증가하였다. Caspase의 활성을 저해하는 세포사멸억제단백질 중의 하나인 survivin 단백질 발현이 piperine에 의해 감소하였다. 이 결과로부터 대장암세포인 HT-29 세포에서 piperine이 Bcl-2 family 단백질 발현 변화를 초래하여 미토콘드리아 막 투과성 증가시키고 cytochrome c 방출을 증가시키고, caspase 활성을 증가시키고 survivin 단백질 발현을 억제하여 세포사멸을 유도하여 항암 효과를 나타냄을 알 수 있다. 본 연구는 piperine이 대장암에 강한 항암 효과가 있음을 밝혔으나 향후 암예방 및 암치료제로서 piperine을 활용하기 위해서는 동물실험 및 임상실험 등 다양한 추가 실험이 필요할 것으로 보인다.

Anti-Cancer Activity of the Flower Bud of Sophora japonica L. through Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Lee, Jin Wook;Park, Gwang Hun;Eo, Hyun Ji;Song, Hun Min;Kim, Mi Kyoung;Kwon, Min Ji;Koo, Jin Suk;Lee, Jeong Rak;Lee, Man Hyo;Jeong, Jin Boo
    • 한국자원식물학회지
    • /
    • 제28권3호
    • /
    • pp.297-304
    • /
    • 2015
  • The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.

궁경1호전(宮頸1號煎)이 자궁경부암세포(子宮頸部癌細胞)(HeLa Cell)에 미치는 영향(影響) (Kung-kyung-IlHo-jeon on Induced Apoptosis in Human Cervical Careinoma HeLa Cells)

  • 강영금;최창민;조한백;유심근
    • 대한한방부인과학회지
    • /
    • 제18권1호
    • /
    • pp.15-28
    • /
    • 2005
  • To address the ability of Kung-Kyung-Ilho-Jeon(KK) to induce cell death, we investigated the effect of KK on cell viability. Forty-eight hours later, loss of viability occurred following KK exposure in a dose-dependent manner. The treatment of KK, a commonly used herb formulation in Korea and China, caused a decrease in cell viability. KK also resulted in apoptotic morphology a brightly blue-fluorescent condensed nuclei by Hoechst 33258-staining, and reduction of cell volume. Our results show that KK induces caspase-3 and -9 activation in a time-dependent manner. In addtion, the translocation of cytochrome c release into cytoplasm has been observed under the presence of $5mg/m{\ell}$ KK. The subsequent loss of mitochondria membrane potential is collapsed by the addition of KK. Our immunoblotting data show that PARP, a well known caspase-3 and -6 substrate, is cleaved by KK. We show that a pro-apoptotic protein, Bax is increased in the presence of KK but that the amount of Bcl-2 is not changed. We suggest that Bax, a critical protein which can regulate channel of mitochondria to release cytochrome c, is a key protein in KK-induced apoptosis of Hela human cervical carcinoma cells

  • PDF

Ethanol Extract of Smilax glabra Induces Apoptotic Cell Death in Human YD10B Oral Squamous Cell Carcinoma Cells

  • Young Sun Hwang
    • 치위생과학회지
    • /
    • 제23권3호
    • /
    • pp.216-224
    • /
    • 2023
  • Background: Smilax glabra has various pharmacological activities and is widely used as a herbal medicine. Although the incidence of oral cancer is low, the recurrence rate is high, and the 5-year survival rate is poor. It is necessary to search for anticancer drugs that increase the effect of cancer chemotherapy on heterogeneous oral tissues and reduce the side effects on normal cells. This study aimed to investigate the effects and mechanism of ethanol extract of Smilax glabra (EESG) as an anticancer drug for oral cancer. Methods: Smilax glabra root components extracted with 70% ethanol were used to analyze their effects on cancer cells. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay was performed for cytotoxicity analysis. Flow cytometry was performed to determine the cell cycle phase distribution. To observe apoptotic cells, terminal deoxynucleotidyl transferase dUTP nick end labeling and γH2AX were detected by fluorescence microscope. The protein levels of cleaved PARP and caspase were analyzed using western blotting. The activation of procaspase-3 was confirmed by measuring caspase-3 activity. Results: EESG was no cytotoxic to normal gingival fibroblast but was high in YD10B oral squamous cell carcinoma (OSCC) cells. EESG treatment increased the subdiploid DNA content of YD10B cells by assessing DNA content distribution. Chromatin condensation and DNA strand breaks increased in YD10B cells treated with EESG. EESG-treated YD10B cells had high Annexin V and low propidium iodide levels, confirming that early apoptosis was induced. In addition, increased levels of γH2AX foci, a marker of DNA damage, were observed in the nuclei of EESG-treated YD10B cells. The EESG-treated YD10B cells also exhibited decreased procaspase-3 and procaspase-9 levels, increased PARP cleavage and caspase-3 activity. Conclusion: These results indicate that EESG inhibited cancer cell proliferation by inducing apoptosis in YD10B OSCC cells.

Combined Treatment of Herbal Mixture Extract H9 with Trastuzumab Enhances Anti-tumor Growth Effect

  • Lee, Sunyi;Han, Sora;Jeong, Ae Lee;Park, Jeong Su;Jung, Seung Hyun;Choi, Kang-Duk;Yang, Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1036-1046
    • /
    • 2015
  • Extracts from Asian medicinal herbs are known to be successful therapeutic agents against cancer. In this study, the effects of three types of herbal extracts on anti-tumor growth were examined. Among the three types of herbal extracts, H9 showed stronger anti-tumor growth effects than H5 and H11 in vivo. To find the molecular mechanism by which H9 inhibited the proliferation of breast cancer cell lines, the levels of apoptotic markers were examined. Proapoptotic markers, including cleaved PARP and cleaved caspases 3 and 9, were increased, whereas the anti-apoptotic marker Bcl-2 was decreased by H9 treatment. Next, the combined effect of H9 with the chemotherapeutic drugs doxorubicin/cyclophosphamide (AC) on tumor growth was examined using 4T1-tumor-bearing mice. The combined treatment of H9 with AC did not show additive or synergetic anti-tumor growth effects. However, when tumor-bearing mice were co-treated with H9 and the targeted anti-tumor drug trastuzumab, a delay in tumor growth was observed. The combined treatment of H9 and trastuzumab caused an increase of natural killer (NK) cells and a decrease of myeloid-derived suppressor cells (MDSC). Taken together, H9 induces the apoptotic death of tumor cells while increasing anti-tumor immune activity through the enhancement of NK activity and diminishment of MDSC.

Apoptotic Effects of Cordycepin Through the Extrinsic Pathway and p38 MAPK Activation in Human Glioblastoma U87MG Cells

  • Baik, Ji-Sue;Mun, Seo-Won;Kim, Kyoung-Sook;Park, Shin-Ji;Yoon, Hyun-Kyoung;Kim, Dong-Hyun;Park, Min-Kyu;Kim, Cheorl-Ho;Lee, Young-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.309-314
    • /
    • 2016
  • We first demonstrated that cordycepin inhibited cell growth and triggered apoptosis in U87MG cells with wild-type p53, but not in T98G cells with mutant-type p53. Western blot data revealed that the levels of procaspase-8, -3, and Bcl-2 were downregulated in cordycepin-treated U87MG cells, whereas the levels of Fas, FasL, Bak, cleaved caspase-3, -8, and cleaved PARP were upregulated, indicating that cordycepin induces apoptosis by activating the death receptor-mediated pathway in U87MG cells. Cordycepin-induced apoptosis could be suppressed by only SB203580, a p38 MAPK-specific inhibitor. These results suggest that cordycepin triggered apoptosis in U87MG cells through p38 MAPK activation and inhibition of the Akt survival pathway.

Effect of β-carotene on Cell Growth Inhibition of KB Human Oral Cancer Cells

  • Yang, Sung-Su;Kim, Su-Gwan;Park, Byung-Sun;Go, Dae-San;Yu, Sun-Kyoung;Kim, Chun Sung;Kim, Jeongsun;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.105-111
    • /
    • 2016
  • ${\beta}-carotene$ is present in carrots, pumpkins, and sweet potatoes. It suppresses many types of cancers by regulating cellular proliferation and apoptosis through a variety of mechanisms. However, the effects of ${\beta}-carotene$ on oral cancer cells have not been clearly established. The main goal of this study was to investigate the effects of ${\beta}-carotene$ on cell growth and apoptosis in oral cancer cells. Our results demonstrate that treatment with ${\beta}-carotene$ induced inhibition of cell growth, and that the effect was dependent on ${\beta}-carotene$ treatment time and concentration in KB cells. Furthermore, treatment with ${\beta}-carotene$ induced nuclear condensation and fragmentation in KB cells. ${\beta}-carotene$ promoted proteolytic cleavage of procaspase-3, -7, -8 and -9 with associated increases in the concentration of cleaved caspase-3, -7, -8 and -9. In addition, the level of cleaved PARP was increased by ${\beta}-carotene$ treatment in KB cells. These results suggest that ${\beta}-carotene$ can suppress cell growth and induce apoptosis in KB human oral cancer cells, and that it may have potential usefulness in anti-cancer drug discovery efforts.

Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells

  • Lee, Yoon-Jin;Park, Kwan-Sik;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.493-502
    • /
    • 2020
  • Apigenin, a naturally occurring flavonoid, is known to exhibit significant anticancer activity. This study was designed to determine the effects of apigenin on two malignant mesothelioma cell lines, MSTO-211H and H2452, and to explore the underlying mechanism(s). Apigenin significantly inhibited cell viability with a concomitant increase in intracellular reactive oxygen species (ROS) and caused the loss of mitochondrial membrane potential (ΔΨm), and ATP depletion, resulting in apoptosis and necroptosis in monolayer cell culture. Apigenin upregulated DNA damage response proteins, including the DNA double strand break marker phospho (p)-histone H2A.X. and caused a transition delay at the G2/M phase of cell cycle. Western blot analysis showed that apigenin treatment upregulated protein levels of cleaved caspase-3, cleaved PARP, p-MLKL, and p-RIP3 along with an increased Bax/Bcl-2 ratio. ATP supplementation restored cell viability and levels of DNA damage-, apoptosisand necroptosis-related proteins that apigenin caused. In addition, N-acetylcysteine reduced ROS production and improved ΔΨm loss and cell death that were caused by apigenin. In a 3D spheroid culture model, ROS-dependent necroptosis was found to be a mechanism involved in the anti-cancer activity of apigenin against malignant mesothelioma cells. Taken together, our findings suggest that apigenin can induce ROS-dependent necroptotic cell death due to ATP depletion through mitochondrial dysfunction. This study provides us a possible mechanism underlying why apigenin could be used as a therapeutic candidate for treating malignant mesothelioma.

Dual Cytotoxic Responses Induced by Treatment of A549 Human Lung Cancer Cells with Sweet Bee Venom in a Dose-Dependent Manner

  • Yu-Na Hwang;In-Seo Kwon;Han-Heom Na;Jin-Sung Park;Keun-Cheol Kim
    • 대한약침학회지
    • /
    • 제25권4호
    • /
    • pp.390-395
    • /
    • 2022
  • Objectives: Sweet bee venom (sBV) is purified from Apis mellifera, containing a high level of melittin-its main component. It has been used as a therapeutic agent for pain relief and anti-inflammation, as well as for treating neuronal abnormalities. Recently, there have been studies on the therapeutic application of sBV for anticancer treatment. In the present study, we investigated the pharmacological effect of sBV treatment in A549 human lung cancer cells. Methods: We used microscopic analysis to observe the morphological changes in A549 cells after sBV treatment. The MTT assay was used to examine the cytotoxic effect after dose-dependent sBV treatment. Molecular changes in sBV were evaluated by the expression of apoptosis marker proteins using western blot analysis. Results: Microscopic analysis suggested that the growth inhibitory effect occurred in a dose-dependent manner; however, cell lysis occurred at a concentration over 20 ㎍/mL of sBV. The MTT assay indicated that sBV treatment exhibited a growth inhibitory effect at a concentration over 5 ㎍/mL. On fluorescence activated cell sorting analysis, G0 dead cells were observed after G1 arrest at treatment concentrations up to 10 ㎍/mL. However, rapid cell rupture was observed at a concentration of 20 ㎍/mL. Western blot analysis demonstrated that sBV treatment modulated the expression of multiple cell death-related proteins, including cleaved-PARP, cleaved-caspase 9, p53, Bcl2, and Bax. Conclusion: sBV induced cell death in A549 human lung cancer cells at a pharmacological concentration, albeit causing hemolytic cell death at a high concentration.