• Title/Summary/Keyword: clearance length

Search Result 152, Processing Time 0.029 seconds

Seismic Behavior Analysis of the Bridge Retrofitted by Restrainer (Restrainer로 보강된 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;원정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.289-296
    • /
    • 2000
  • Dynamic responses of a bridge retrofitted with cable restrainers are examined under seismic excitations. A simplified and idealized mechanical model is developed to analyze the effects of the restrainers, which can consider the plastic behavior as well as the fracture of the cable. Using the proposed model, the effects of the stiffness and the clearance length of the restrainer upon the global bridge seismic behaviors are estimated. The changes of pounding forces, shear forces, and bending moments due to the application of restrainers are also investigated. The main effect of restrainers upon global bridge motions is found to reduce the relative distances between adjacent vibrations units. It is also found that the relative distances are decreased as the clearance length of the restrainer decreases and the stiffness of restrainer increases.

  • PDF

A Study on the Brazing Bondinf Conditions of A1050 Using Al-Si Alloy Filler Metal (Al-Si계 필러메탈을 이용한 A1050알루미늄의 브레이징 접합조건에 관한 연구)

  • 김정일;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.66-72
    • /
    • 1993
  • The brazing of Al to Al using Al-Si alloy filler metal was performed under different bonding conditions such as ratio of lap length to plate thickness, surface roughness and joint clearance of the lap joint. The adopted thickness of the base metal in this experiments were two kinds of 4mm and 7mm which were most commonly used in various field. Influence of several bonding conditions of Al/Al joint was quantitavely evaluated by bonding strength test, and microstructural analysis at the interlayer were performed by optical microscope. From above experiments, the optimum bonding conditions of the brazing bonding of Al/Al using Al-Si alloy filler metal was determined. The major results obtained are as follows. 1) The fracture occurs at brazed joint in the conditions of that the ratio of lap length to plate thickness is less than 2 in case of 7mm plate thickness. 2) The ratio of lap length to plate thickness which the fracture occurs at base metal is decreased with the decreasing of the plate thickness. 3) The joint strength is not affected by the surface roughness and joint clearance of the brazed part. 4) The heat-treatment of the brazed joint contribute to eliminate the boundary between the base metal and filler metal. However, the joint strength is not affected by the heat-treatment.

  • PDF

Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors (고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정)

  • Jeong, Kwon Jong;Hwang, Sung Ho;Baek, Doo San;Kim, Tae Young;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.

Effects of Water Temperature and Salinity on Dietary Feeding of Manila clam (Ruditapes philippinarum) (바지락, Ruditapes philippinarum의 먹이 섭취에 미치는 수온과 염분의 영향)

  • 김철원;고강희
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • The feeding, clearance rate, and ingestion rate of Manila clam (Ruditapes philippinarum) were investigated with small group (10.8$\pm$.58 mm in shell length) and large group (37.5$\pm$3.8 mm in shell length) under combination in water temperature (24, 27, 33, $36^{\circ}C$) With salinity (12, 15, 24, 27$\textperthousand$). The maximum feeding, clearance rate, and ingestion rate in small and large groups were $27^{\circ}C$ and 27$\textperthousand$, respectively. While, The minimum feeding, clearance rate, and ingestion rate in both groups were $36^{\circ}C$ and 12$\textperthousand$, respectively. There results were suggested that the feeding, clearance rate, and ingestion rate of Manila clam were significantly influenced by external factors such as water temperature and salinity. The reason for the mass mortality of Manila clam during the heavy rainfall in summer season can be explained by high temperature and low salinity.

Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges

  • Park, Ki-Jung;Kim, Do-Young;Hwang, Eui-Seung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1252-1264
    • /
    • 2018
  • Long span bridges such as steel cable stayed and suspension bridges are usually more flexible than short to medium span bridges and expected to have large deformations. Deflections due to live load for long span bridges are important since it controls the overall heights of the bridge for securing the clearance under the bridge and serviceability for securing the comfort of passengers or pedestrians. In case of sea-crossing bridges, the clearance of bridges is determined considering the height of the ship master from the surface of the water, the trim of the ship, the psychological free space, the tide height, and live load deflection. In the design of bridges, live load deflection is limited to a certain value to minimize the vibrations. However, there are not much studies that consider the live load deflection and its effects for long span bridges. The purpose of this study is to investigate the suitability of live load deflection limit and its actual effects on serviceability of bridges for steel cable-stayed and suspension bridges. Analytical study is performed to calculate the natural frequencies and deflections by design live load. Results are compared with various design limits and related studies by Barker et al. (2011) and Saadeghvaziri et al. (2012). Two long span bridges are selected for the case study, Yi Sun-Sin grand bridge (suspension bridge, main span length = 1545 m) and Young-Hung grand bridge (cable stayed bridge, main span length = 240 m). Long-term measured deflection data by GNSS system are collected from Yi Sun-Sin grand bridge and compared with the theoretical values. Probability of exceedance against various deflection limits are calculated from probability distribution of 10-min maximum deflection. The results of the study on the limitation of live load deflection are expected to be useful reference for the design, the proper planning and deflection review of the long span bridges around the world.

A Design Fitness Analysis of Journal Bearings for LPLi Fuel Pump Application (LPLi 연료펌프 적용을 위한 저어널 베어링의 설계 적합성 해석)

  • Lee, An-Sung;Kim, Chang-Up
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.324-329
    • /
    • 2009
  • In this study a complex design fitness analysis of journal bearings is carried out for the LPLi rotary-vane fuel pump application, as an external and horizontal installation, in LPG vehicles. Bearings considered in the analyses are plain and 3-axial groove journal bearings. Upon reflecting the fact that the primary failure mode of bearings in the application is a premature friction and wear failure of bearing metal due to a very low viscosity of liquid fuel LPG as a bearing lubricant, the performance factors of bearings used in an evaluation process of design fitness are a load carrying capacity and vibration suppression ability relative to a rated speed. At this time the design variables of bearings are a radial clearance and length. Results show that, in terms of both of the load carrying capacity and vibration suppression ability, the plain journal bearings are superior to the 3-axial groove journal bearings and among the plain bearings the smaller the bearing clearance (5>10>$15\;{\mu}m$) is and the longer the bearing length (6<8<10<12<14 mm) is, the better the bearing performance is.

Study on Cutting Processing Characteristic of Ti alloy (Ti 합금의 절삭 가공특성에 관한 연구)

  • 반재삼;이경원;김규하;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1017-1020
    • /
    • 2002
  • The pure Ti is taken annealing process for one hour at 90$0^{\circ}C$. The pure Ti is sufficient for ASTM B348 Grade2. The rolling mill roll the Ti-8Ta-3Nb(wt%) which became vacuum melting in arc furnace until the length is about 45mm and the thickness is about 6.05mm. Then it is made 6mm$\times$6mm$\times$44mm by wire cutting with EDM and it is made ∮ 6mm by rough cutting with the general purpose lathe. The machining accuracy of implant parts in the dental and medical science are decided by dimension, shpe, straightness, surface roughness. It is difficult to cut for the Ti alloy. It is caused problems of straight degree and surface roughness to the Ti alloy have many cases which length is smaller than diameter in cutting. Total 24 specimens different kind of 4 alloies are used in experiment to gain a cutting property. According to the cutting velocity, cutting depth, cutting temperature, feed and clearance angle experiments are performed. Conclusively it is expected that cutting depth of 0.5mm, feed velocity of 0.07mm/rev and cutting velocity of 80m/min could make a suitable result.

  • PDF

Development of a Static Pressure Radial Air Bearing and Estimate of Design Variables (정압형 레디얼 공기베어링 개발 및 설계인자 영향 평가)

  • Kim, Ock-Hyun;Lee, Kyu-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.502-506
    • /
    • 2012
  • Air bearing is characterized by its extremely low friction and cleanliness such that it is widely used especially for spindles with ultra-high rotational speed at several tens of thousands rpm. This paper contributes to design of a static radial air bearing suggesting numerical analysis to anticipate its performances. The numerical analysis is an iteration method based on finite difference formulation of the Reynolds equation. A prototype air bearing has been designed and manufactured. Its load capacity has been measured and compared with the numerical solutions. The result shows good consistency between the experiment and theory, which informs that the numerical analysis can be used as an useful tool to anticipate the performances. Effects of design variables on the bearing performance have been examined by Taguchi's experimental methods using orthogonal array. Number of holes for supplying pressurized air, clearance between shaft and bearing, the hole diameter and bearing length are chosen for the design variables. The result shows that the clearance and the bearing length are the most influential variables while the others can be considered as almost negligible.

Cyclic testing of short-length buckling-restrained braces with detachable casings

  • Pandikkadavatha, Muhamed S.;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.699-716
    • /
    • 2016
  • Buckling-restrained braced frames (BRBFs) are commonly used as lateral force-resisting systems in the structures located in seismic-active regions. The nearly symmetric load-displacement behavior of buckling-restrained braces (BRBs) helps in dissipating the input seismic energy through metallic hysteresis. In this study, an experimental investigation has been conducted on the reduced-core length BRB (RCLBRB) specimens to evaluate their hysteretic and overall performance under gradually increased cyclic loading. Detachable casings are used for the concrete providing confinement to the steel core segments of all test specimens to facilitate the post-earthquake inspection of steel core elements. The influence of variable core clearance and the local detailing of casings on the cyclic performance of RCLBRB specimens has been studied. The RCLBRB specimen with the detachable casing system and a smaller core clearance at the end zone as compared to the central region exhibited excellent hysteretic behavior without any slip. Such RCLBRB showed balanced higher yielding deformed configuration up to a core strain of 4.2% without any premature instability. The strength-adjustment factors for the RCLBRB specimens are found to be nearly same as that of the conventional BRBs as noticed in the past studies. Simple expressions have been proposed based on the regression analysis to estimate the strength-adjustment factors and equivalent damping potential of the RCLBRB specimens.

Performance Predictions of Gas Foil Journal Bearing with Shim Foils (심포일을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2018
  • This paper presents a computational model of a gas foil journal bearing with shim foils between the top foil and bumps, and predicts its static and dynamic performance. The analysis takes the previously developed simple elastic foundation model for the top foil-bump structure and advances it by adding foil models for the "shim foil" and "outer top foil." The outer top foil is installed between the (inner) top foil and bumps, and the shim foil is installed between the inner top foil and outer top foil. Both the inner and outer top foils have an arc length of $360^{\circ}$, but the arc length of the shim foil is shorter, which causes a ramp near its leading edge in the bearing clearance profile. The Reynolds equation for isothermal and isoviscous ideal gas solves the hydrodynamic pressure that develops within the bearing clearance with preloads due to the ramp. The centerline pressure and film thickness predictions show that the shim foil mitigates the peak pressure occurring at the loading direction, and broadens the positive pressure as well as minimum film thickness zones except for the shortest shim foil arc length of $180^{\circ}$. In general, the shim foil decreases the journal eccentricity, and increases the power loss, direct stiffness, and damping coefficients. As the shim foil arc length increases, the journal eccentricity decreases while the attitude angle, minimum film thickness, and direct stiffness/damping coefficients in the horizontal direction increase.