• Title/Summary/Keyword: clean시스템

Search Result 608, Processing Time 0.026 seconds

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations (금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구)

  • Nde, Dieudonne Tanue;Lee, Ji Won;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2022
  • Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

Preparation of Polyacrylate-Based Non-Reinforced Anion Exchange Membranes via Photo-Crosslinking for Reverse Electrodialysis (역전기투석용 광가교형 폴리아크릴레이트계 음이온교환막 제조)

  • Tae Hoon Kim;Seok Hwan Yang;Jang Yong Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2024
  • A photo-crosslinked anion exchange membrane (AEM) based on quaternary-aminated polyacrylates was developed for reverse electrodialysis (RED). Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Cross-linked AEMs without any polymer supporters were fabricated through photo-crosslinking between polymer-typed acrylates with anion conducting groups, in particular, polymer-typed acrylates were synthesized based on engineering plastic with outstanding mechanical and chemical property. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (CQAPPOA-20, CQAPPOA-35, and CQAPPOA-50) were ~50% lower than that of AMV (2.6 Ω cm2). Moreover, the transport number of CQAPPOA-35 wase comparable to that of AMV, despite the thin thickness (40 ㎛) of the fabricated membranes. The RED stack with the CQAPPOA-35 membrane provided an excellent maximum power density of 2.327 W m-2 at a flow rate of 100 mL min-1, which is 15% higher than that (2.026 W m-2) of the RED stack with the AMV membrane. Considering easy fabrication process by UV photo-crosslinking and outstanding RED stack properties, the CQAPPOA-35 membrane is a promising candidate for REDs.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

A Study on the Development of a Home Mess-Cleanup Robot Using an RFID Tag-Floor (RFID 환경을 이용한 홈 메스클린업 로봇 개발에 관한 연구)

  • Kim, Seung-Woo;Kim, Sang-Dae;Kim, Byung-Ho;Kim, Hong-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.508-516
    • /
    • 2010
  • An autonomous and automatic home mess-cleanup robot is newly developed in this paper. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot (McBot) to completely overcome this problem. The robot needs the capability for agile navigation and a novel manipulation system for mess-cleanup. The autonomous navigational system has to be controlled for the full scanning of the living room and for the precise tracking of the desired path. It must be also be able to recognize the absolute position and orientation of itself and to distinguish the messed object that is to be cleaned up from obstacles that should merely be avoided. The manipulator, which is not needed in a vacuum-cleaning robot, has the functions of distinguishing the large trash that is to be cleaned from the messed objects that are to be arranged. It needs to use its discretion with regard to the form of the messed objects and to properly carry these objects to the destination. In particular, in this paper, we describe our approach for achieving accurate localization using RFID for home mess-cleanup robots. Finally, the effectiveness of the developed McBot is confirmed through live tests of the mess-cleanup task.

Efficient Management and use of Records from the Truth Commissions (과거사위원회 기록의 효율적인 관리와 활용방안)

  • Lim, Hee Yeon
    • The Korean Journal of Archival Studies
    • /
    • no.17
    • /
    • pp.247-292
    • /
    • 2008
  • Investigations have been started to set the modern history and national spirit to rights after Commissions were established. Those Commissions are established and operated with time limit to finish its own missions. They creates three kinds of records as acquired materials which acquired or are donated for investigation; investigation records as investigation reports; and administrative records that created while supporting organization's operation. The Commissions use more past records to do special tasks asnation's slate clean and uncovering the truth than other agencies. In other words, the commissions take the most advantages of well-managed records, however, their record management environment and operation systems are relatively loose than other permanent machineries. It has three reasons that; first, there is no record management regulations and criteria for machineries that have time limit. This affected each commissions 'systems and 6 Truth Commissions' record management systems are built separately and on the different level; Second, members lack responsibility from frequent sending, reinstatement, change, and restructuring and that makes troubles to produce and manage records; Third, central archives pay less attention to machineries that operated limited period as the truth commissions. The Commissions rather need more systematic control because its records have historical value. To solve these problems, record management regulations have to be prepared first with features of organizations running limited time and commissions' records as acquired materials or investigation records. Furthermore, building up standard record management system for the Commissions, standardizing transfer data, imposing professional record personnel, and setting limits frequent personnel changes would finish practical problems. Besides, those records created to reveal the truth should use for education and research because Truth Commissions are established to set unfortunate history right and not to repeat it again. The records would serve as steppingstone for establishment of the Truth Record Center that does education, information work, publication, and research with the records. The record center would help using the records efficiently and improving knowledge for its people. And, the center should devote people to recognize importance of the records.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.

ANALYSIS OF ER:YAG LASER IRRADIATION ON CUTTING EFFICACY AND TEMPERATURE CHANGES OF DENTIN (Er:YAG 레이저의 상아질 삭제효과 및 이에 따른 온도변화)

  • Im, Kwang-Ho;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.32-44
    • /
    • 2001
  • The purpose of this study was to investigate the effects of Er : YAG laser on cutting efficacy and temperature changes of dentin. We used the dentin specimens of human premolars and molars which contain the physiologic saline and maintain the pulpal pressure in dentinal tubules. Each specimen was exposed to Er : YAG laser with non-contact handpiece type delivery system under different treatment condition of irradiation energy, pulse repetition rate, and exposure time. Two procedures were conducted by the presence of water flow during lasing. The specimens were grouped by thickness of dentin. We investigated the cavity pattern, volume, and temperature change of dentin specimen to determine the cutting efficacy and temperature rise of Er : YAG laser, and obtained following results. 1. Cutting volume of dentin was increased by increasing the irradiation energy, pulse repetition rate, and exposure time(P<0.05). 2. Margins of abulated cavities were sharp and clean and floors of cavities were conical in shape and showing smooth surfaces. Upper diameter of abulated cavities were increasing as laser parameter of irradiation energy, pulse repetition rate, and exposure time were increased. A few cracks were observed on abulated surfaces under treatment condition of laser parameter with 150mJ, 5Hz, and 5sec. 3. Temperature was increased as laser parameter of irradiation energy, pulse repetition rate, and exposure time were increased, and temperature rise was decreased as dentin thickness was increased(P<0.05). 4. Temperature rise was decreased under water flow compared with no water flow during laser exposure(P<0.05). From these results, we think that the method of using a Er:YAG laser would be effective and safe in cutting dentin for clinical application.

  • PDF

Analysis of Linkage between Official Development Assistance (ODA) of Forestry Sector and Sustainable Development Goals (SDGs) in South Korea (국내 임업분야 공적개발원조(ODA)사업과 지속가능발전목표(SDGs)와의 연관성 분석)

  • Kim, Nahui;Moon, Jooyeon;Song, Cholho;Heo, Seongbong;Son, Yowhan;Lee, Woo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.96-107
    • /
    • 2018
  • This study analyzed the linkage between the Forestry sector Official Development Assistance (ODA) Project in South Korea and the Sustainable Development Goals (SDGs) of United Nations (UN), Suggested direction of ODA project focusing on the implementation of the SDGs. Forestry sector ODA project data in South Korea have collected from Economic Development Cooperation Fund (EDCF) statistical inquiry system developed by The Export-Import Bank of Korea. According to the analysis result, Forestry sector ODA project in South Korea have been actively implemented in the fields of forestry development, forestry policy and administration. In both fields, Korea Forest Service and Korea International Cooperation Agency (KOICA) carried out the most projects. The Forestry sector ODA project data in South Korea are classified technical development, capacity building, construction of infrastructure and afforestation based on their objectives and contents. SDGs emphasizes the importance of national implementation assessment and this study analyze linkage between ODA activity content in each classification item and 2016 Korea Forest Service Performance Management Plan indicator. Analyzed the 2016 Korea Forest Service Performance Management Plan indicator and SDGs target and SDGs indicator were identified. finally, SDGs goals were recognized. In conclusion, Forestry sector ODA project in South Korea are associated with the SDGs Goal 1 (No Poverty), Goal 2 (Zero Hunger), Goal 6 (Clean Water and Sanitation), Goal 13 (Climate Action), Goal 15 (Life on Land) and Goal 17 (Partnership for The Goals). Therefore, With the launch of the SDGs, This study analyzed the linkage among the Forestry sector ODA Project in South Korea, the 2016 Korea Forest Service Performance Management Plan and the SDGs. it presented the limitations of Forestry sector ODA Project in South Korea and made proposals for the implementation of the SDGs.