DOI QR코드

DOI QR Code

Preparation of Polyacrylate-Based Non-Reinforced Anion Exchange Membranes via Photo-Crosslinking for Reverse Electrodialysis

역전기투석용 광가교형 폴리아크릴레이트계 음이온교환막 제조

  • Tae Hoon Kim (Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology) ;
  • Seok Hwan Yang (Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang Yong Lee (Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology)
  • 김태훈 (한국화학연구원 수소에너지연구센터) ;
  • 양석환 (한국화학연구원 수소에너지연구센터) ;
  • 이장용 (한국화학연구원 수소에너지연구센터)
  • Received : 2023.12.06
  • Accepted : 2024.01.26
  • Published : 2024.02.29

Abstract

A photo-crosslinked anion exchange membrane (AEM) based on quaternary-aminated polyacrylates was developed for reverse electrodialysis (RED). Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Cross-linked AEMs without any polymer supporters were fabricated through photo-crosslinking between polymer-typed acrylates with anion conducting groups, in particular, polymer-typed acrylates were synthesized based on engineering plastic with outstanding mechanical and chemical property. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (CQAPPOA-20, CQAPPOA-35, and CQAPPOA-50) were ~50% lower than that of AMV (2.6 Ω cm2). Moreover, the transport number of CQAPPOA-35 wase comparable to that of AMV, despite the thin thickness (40 ㎛) of the fabricated membranes. The RED stack with the CQAPPOA-35 membrane provided an excellent maximum power density of 2.327 W m-2 at a flow rate of 100 mL min-1, which is 15% higher than that (2.026 W m-2) of the RED stack with the AMV membrane. Considering easy fabrication process by UV photo-crosslinking and outstanding RED stack properties, the CQAPPOA-35 membrane is a promising candidate for REDs.

본 연구에서는 역전기투석용 4차 암모늄이온을 음이온교환기로 갖는 폴리아크릴레이트계 광가교형 음이온교환막을 개발하였다. 역전기투석은 청정 재생에너지 생산 시스템이지만 출력이 낮고 핵심 소재인 분리막의 가격이 비싸다는 단점으로 인해 상용화에 제한이 있다. 이에, 지지체가 없는 광가교형 음이온교환소재를 제조하였으며 개발한 고분자의 주쇄는 우수한 물성의 엔지니어링 플라스틱을 기반으로 제조하였다. 제조된 분리막은 우수한 물리적, 화학적, 전기화학적 특성을 보였으며 상용 음이온교환막인 AMV와 비교하여 약 50% 낮은 분리막 저항을 보였다. 더욱이 CQAPPOA-35는 40 ㎛의 얇은 분리막 두께에도 불구하고 상용막과 동등 수준의 선택도를 보이는 것을 확인할 수 있었다. CQAPPOA-35을 적용한 RED 스택은 최대 2.327 W m-2 (flow rate : 100 mL min-1)의 출력 밀도를 보여 AMV가 도입된 것보다 15% 향상된 성능 특성을 보였다. 개발된 CQAPPOA-35이 광경화를 통해 쉽고 저렴하게 제조할 수 있으며 RED 스택 특성도 매우 우수하다는 점을 고려할 때, 개발된 CQAPPOA-35은 RED용 음이온교환막으로 상용 활용을 위한 대안이 될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. RS-2023-00259920).

References

  1. J.-H. Lee, D.-H. Kim, and M.-S. Kang, "Surface-modified pore-filled anion-exchange membranes for efficient energy harvesting via reverse electrodialysis", Membranes, 13, 894 (2023). 
  2. M. N. Z. Abidin, M. M. Nasef, and J. Veerman, "Towards the development of new generation of ion exchange membranes for reverse electrodialysis: A review", Desalination, 537, 115854 (2022). 
  3. H. Fan and N. Y. Yip, "Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes", J. Membr. Sci., 573, 668 (2019). 
  4. Y. J. Lee, M. S. Cha, S.-G. Oh, S. So, T.-H. Kim, W. S. Ryoo, Y. T. Hong, and J. Y. Lee, "Reinforced anion exchange membrane based on thermal cross-linking method with outstanding cell performance for reverse electrodialysis", RSC Adv., 9, 27500 (2019). 
  5. J. Morenoa, V. Dieza, M. Saakesa, and K. Nijmeijer, "Mitigation of the effects of multivalent ion transport in reverse electrodialysis", J. Membr. Sci., 550, 155 (2018). 
  6. H-K. Kim, M-S. Lee, S-Y. Lee, Y-W. Choi, N-J. Jeong, and C-S. Kim, "High power density of reverse electrodialysis with pore-illing ion exchange membranes and a high-open-area spacer", J. Mater. Chem. A, 3, 16302 (2015). 
  7. Y. Mei, Z. Yao, L. Ji, P. H. Toy, and C. Y. Tang, "Effects of hypochlorite exposure on the structure and electrochemical performance of ion exchange membranes in reverse electrodialysis", J. Membr. Sci., 549, 295 (2018). 
  8. M. S. Cha, J. E. Park, S. Kim, S.-H. Shin, S. H. Yang, S. J. Lee, T.-H. Kim, D. M. Yu, S. So, K. M. Oh, Y.-E. Sung, Y.-H. Cho, and J. Y. Lee, "Oligomeric chain extender-derived anion conducting membrane materials with poly(p-phenylene)- based architecture for fuel cells and water electrolyzers", J. Mater. Chem. A, 10, 9693 (2022). 
  9. S. Zhu, R. S. Kingsbury, D. F. Call, and O. Coronell, "Impact of solution composition on the resistance of ion exchange membranes", J. Membr. Sci., 554, 39 (2018). 
  10. J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, "Ion exchange membranes: New developments and applications", J. Membr. Sci., 522, 267 (2017). 
  11. T. Luo, S. Abdu, and M. Wessling, "Selectivity of ion exchange membranes: A review", J. Membr. Sci., 555, 429 (2018). 
  12. C. D. Rio, O. Garcia, E. Morales, and P. G. Escribano, "Single cell performance and electrochemical characterization of photocrosslinked and post-sulfonated SEBS-DVB membranes", Electrochim. Acta, 176, 378 (2015). 
  13. J. R. Naira, C. Gerbaldia, G. Meligrana, R. Bongiovannia, S. Bodoardo, N. Penazzia, P. Reale, and V. Gentili, "UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries", J. Power Sources, 178, 751 (2008). 
  14. S-L Chen, J. B. Benziger, A. B. Bocarsly, and T. Zhang, "Photo-cross-linking of sulfonated styrene-ethylene-butylene copolymer membranes for fuel cells", Ind. Eng. Chem. Res., 44, 7701 (2005). 
  15. E. Guler, W. V. Baak, M. Saakes, and K. Nijmeijer, "Monovalent-ion-selective membranes for reverse electrodialysis", J. Membr. Sci., 455, 254 (2014). 
  16. M. Zhou, X. Chen, J. Pan, S. Yang, B. Han, L. Xue, J. Shen, C. Gao, and B. V. Bruggen, "A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis", Desalination, 415, 29 (2017). 
  17. A. L. Ong, S. Saad, R. Lan, R. J. Goodfellow, and S. Tao, "Anionic membrane and ionomer based on poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline membrane fuel cells", J. Power Sources, 196, 8272 (2011). 
  18. Q. Yang, C. X. Lin, F. H. Liu, L. Li, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Poly (2,6-dimethyl-1,4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells", J. Membr. Sci., 552, 367 (2018). 
  19. M. I. Khan, C. Zheng, A. N. Mondal, M. M. Hossain, B. Wu, K. Emmanuel, L. Wu, and T. Xu, "Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis", Desalination, 402, 10 (2017). 
  20. H-I Chang, M-S Yang, and M. Liang, "The synthesis, characterization and antibacterial activity of quarternized poly(2,6-dimethyl-1,4-phenylene oxide)s modified with ammonium and phosphonium salts", React. Funct. Polym., 70, 944 (2010). 
  21. H. Zhang, D. Jiang, B. Zhang, J. G. Hong, and Y. Chen, "A novel hybrid poly (vinyl alcohol) (PVA)/poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes for reverse electrodialysis power system", Electrochim. Acta, 239, 65 (2017). 
  22. L. Wu, T.W. Xu, and W. Yang, "Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination", J. Membr. Sci., 286, 185 (2006). 
  23. M. I. Khan, A. N. Mondal, B. Tong, C. Jiang, K. Emmanuel, Z. Yang, L. Wu, and T. Xu, "Development of BPPO-based anion exchange membranes for electrodialysis desalination applications", Desalination, 391, 61 (2016). 
  24. D. R. Dekel, M. Amar, S. Willdorf, M. Kosa, S. Dhara, and C. E. Diesendruck, "Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications", Chem. Mater., 29, 4425 (2017). 
  25. Q. Zhang, Q. Zhang, S. Zhang, and S. Li, "Synthesis and characterization of sulfonated poly(aryl ether sulfone) containing pendent quaternary ammonium groups for proton exchange membranes", J. Membr. Sci., 354, 23 (2010). 
  26. S. Diao, F. Dong, J. Meng, P. Ma, Y. Zhao, and S. Feng, "Preparation and properties of heat-curable silicone rubber through chloropropyl/amine crosslinking reactions", Mater. Chem. Phys., 153, 161 (2015). 
  27. H. Y. Shin, M. S. Cha, S. H. Hong, T. H. Kim, D. S. Yang, S. G. Oh, J. Y. Lee, and Y. T. Hong, "Poly(p-phenylene)-based membrane materials with excellent cell efficiencies and durability for use in vanadium redox flow batteries", J. Mater. Chem. A, 5, 12285 (2017). 
  28. F. Liu, O. Coronell and D. F. Call, "Electricity generation using continuously recirculated flow electrodes in reverse eletrodialysis", J. Power Sources, 355, 206 (2017). 
  29. J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei and Y. Chen, "Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review", J. Membr. Sci., 486, 71 (2015). 
  30. D. A. Vermaas, M. Saakes and K. Nijmeijer, "Power generation using profiled membranes in reverse electrodialysis", J. Membr. Sci., 385, 234 (2011).