• Title/Summary/Keyword: clay soil

Search Result 1,962, Processing Time 0.034 seconds

Relative Contribution of Organic Matter and Clay Content to Cation Exchange Capacity in Sandy Soils (사질토(砂質土)에서 염기치환용량(鹽基置換容量)에 대한 유기물(有機物)과 점토(粘土)의 상대기여도(相對寄與度))

  • Park, Chang-Seo;Jung, Kwang-Young;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.337-342
    • /
    • 1984
  • 224 profiles representing 19 soil series were subjected to multiple regresion analysis to determine the relative contribution of organic matter(OM) and clay content to total cation exchange capacity(CEC) in sandy soil. The independent variables were OM and clay, with the dependent variable CEC. Simple correlation coefficients showed high significance at CEC-OM and CEC-clay. The partial regression coefficients indicated that CEC for each gram of OM was calculated to be 0.549 and 1.351 meq of top and subsoil. The clay contributions of top and subsoil were 0.247 and 0.226 meq, respectively. The standard partial regression coefficients appeared that clay content was 1.23 times as important as orgnic matter in predicting CEC.

  • PDF

Effect of Rainfall-Induced Infiltration on Unsaturated Weathered Soils with Varying Clay Contents (강우시 점토함유량에 따른 화강풍화토의 불포화 침투 특성)

  • 유남동;정상섬;김재홍;박성완
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.159-166
    • /
    • 2004
  • In this study, experiments on the SWCC were performed in order to find out the characteristics of unsaturated soil and to analyze the stability of unsaturated weathered slopes with rainfall-induced wetting. Several soil types classified by mixture portion of clay (CH) in the weathered soil (SW) were used in experimental tests. To achieve the SWCC, the filter paper method was used on SW with varying clay contents. A tensiometer test was used for measuring wetting front suction of the soils in a laboratory with varying relative densities. Based on the experimental results, it is shown that the wetting front suction increases as clay contest of mixture soil increases : in particular, the wetting front suction increases sharply as the clay contents increase. It is also found that wetting front suction affects the initial wetting band depth and stability of the slope.

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.

Application for Improving Resource Recover at Clay-Sandy Soil based on Electrokinetic Technology (동전기법을 이용한 점토성-사질토에 존재하는 자원 회수 증진을 위한 적용성 연구)

  • Shin, Sanghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.5-9
    • /
    • 2013
  • Electrokinetics technology is proposed for improving the recovery metals ion and oil from clay-sandy soil. In order to restore or extract them from clay-sandy soil, the gas produced by anode chamber is re-injected to the clay-sandy soil(sample). Samples produced in this study were completed to verify the proposed performance for 7 days by gradually increasing the pressure to the final pressure of 30psi($2.11kgf/cm^2$) through the compression process. Before compression, the copper rings were inserted into the sample, allowing us to observe the changes in appearance of copper ring after the end of the experiment. In this study, pressurized module and non-pressurized module were tested, respectively. The condition of test is a continuous process and the voltage gradient is 2V/cm during 24 hours. As a result, the efficiency of pressurized module is better than non-pressurized module.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Effects of using silica fume and lime in the treatment of kaolin soft clay

  • Alrubaye, Ali Jamal;Hasan, Muzamir;Fattah, Mohammed Y.
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Soil stabilization can make the soils becoming more stable by using an admixture to the soil. Lime stabilization enhances the engineering properties of soil, which includes reducing soil plasticity, increasing optimum moisture content, decreasing maximum dry density and improving soil compaction. Silica fume is utilized as a pozzolanic material in the application of soil stabilization. Silica fume was once considered non-environmental friendly. In this paper, the materials required are kaolin grade S300, lime and silica fume. The focus of the study is on the determination of the physical properties of the soils tested and the consolidation of kaolin mixed with 6% silica fume and different percentages (3%, 5%, 7% and 9%) of lime. Consolidation test is carried out on the kaolin and the mixtures of soil-lime-silica fume to investigate the effect of lime stabilization with silica fume additives on the consolidation of the mixtures. Based on the results obtained, all soil samples are indicated as soils with medium plasticity. For mixtures with 0% to 9% of lime with 6% SF, the decrease in the maximum dry density is about 15.9% and the increase in the optimum moisture content is about 23.5%. Decreases in the coefficient of permeability of the mixtures occur if compared to the coefficient of permeability of kaolin soft clay itself reduce the compression index (Cc) more than L-SF soil mix due to pozzolanic reaction between lime and silica fume and the optimum percent of lime-silica fume was found to be (5%+6%) mix. The average coefficient of volume compressibility decreases with increasing the stabilizer content due to pozzolanic reaction happening within the soil which results in changes in the soil matrix. Lime content +6% silica fume mix can reduce the coefficient of consolidation from at 3%L+6%SF, thereafter there is an increase from 9%L+6%SF mix. The optimal percentage of lime silica fume combination is attained at 5.0% lime and 6.0% silica fume in order to improve the shear strength of kaolin soft clay. Microstructural development took place in the stabilized soil due to increase in lime content of tertiary clay stabilized with 7% lime and 4% silica fume together.

Behavior of Piled Abutment adjacent to Surcharge Loads (측방유동을 받는 교대말뚝기초에 대한 거동분석)

  • 정상섬;서정주;장범수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.25-32
    • /
    • 2000
  • In order to analyze the behavior of piled abutment adjacent to surcharge loads a numerical study was conducted. In 2D plane stalin analysis, the distribution of lateral soil movement was investigated by varying the thickness of clay layer and the magnitude of surcharge loads. In 3D analysis, the magnitude and distribution of lateral pile-soil movement were studied for different cap rigidity. Based on limited parametric studies, a simple method is proposed to identify the lateral pressure of piled abutment adjacent to surcharge loads.

  • PDF

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

Yield Formations of Sesame(Sesamum indicum L.) as Affected by Different Conditions of Soil Drainage (토양의 배수조건 차이가 참깨 수량성에 미치는 영향)

  • Choi, H.K.;Goo, J.O.;Kim, Y.Z.;Lee, D.G.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 1982
  • To estimate the responses of sesame plant in growth and yielding traits to different soil drainage conditions, a pot trial was conducted by using of sesame variety "Suweon-9" were introduced with 5 different mixing combinations of clay and sea-sand soils as 0:100, 25:75, 50:50, 75:25, and 100:0 percents in volumetric ratio. Also two irrigation methods as 20mm/6 days interval and 10mm/3 days interval were detected. As a result, water drainage was linearly decreased with increament of clay contents. And the excess drainage condition(such as pure sand soil) required more irrigation, however in crop growths, no significant differences among various soil drainage conditions except the pure sand were recognized. On the other hand, number of capsules per plant, among other yielding components, was most contributed factor to the yield, which was effectively given from the soil mixed with clay and sea-sand as 75% and 25%, respectively. Therefore, much similar responses were also detected from the seed yields per a sesame plant. However, the number of seeds per capsule and maturity function were more effectively composed under the soil mixed with clay and sea-sand as 25% and 75% respectively better than under the soil of 75% and 25%. As a conclusion, the yielding responses of sesame plant was advanced more effectively at the soil conditions of water conserved type (e.g. 25%/75% in clay/sand ratio) than of water-draining type (e.g. 75%/25% in clay/sand ratio).nd ratio).

  • PDF

A Study on the Stress Distribution in Soil According to the Composition of the Soil Layer in Case of Surface Loading (지표면 재하시 토층구성에 따른 지중응력분포에 관한 연구)

  • Lim, Jong-Seok;Jung, Sang-Kyun;Ha, Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.510-516
    • /
    • 2005
  • This research aims to verify the stress distribution in soil according to the composition of the soil layer in case of surface loading. For this purpose, loading tests with measurement of stresses in the soil on four kinds of layered model ground in laboratory were performed. Those are (1)homogeneous sand, (2)gravel underlain by sand, (3)sand underlain by clay and (4)gravel underlain by clay. Test results are compared and analysed for the compositions of the soil layers. based on the results obtained, it is found that the larger the difference of the strengths of upper and lower layer is, the smaller the stress in the soil in case of surface loading is.

  • PDF