• Title/Summary/Keyword: clay nanocomposite

Search Result 127, Processing Time 0.031 seconds

Preparation and Characterization of Poly(vinyl alcohol)/bentonite Nanocomposites Films with Modified Bentonites (개질된 벤토나이트가 혼입된 폴리비닐알코올/벤토나이트 나노복합 필름의 제조 및 특성분석)

  • Ji, Byung Chul;Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Han, Myung-Dong;Kim, Ui Ju;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.161-167
    • /
    • 2021
  • Polymer nanocomposite is considered a great alternative to solve the limitations that exist in a simple combination material, as well as to produce multifunctional and high-performance results. In this research, PVA/bentonite nanocomposite films were prepared based on the presence or absence of modification of nano-clay(bentonite) a SUPERGEL® product, modification conditions and content, and the structural variation of the prepared PVA/bentonite nanocomposite films were examined. The effect of variations in the internal structure of the nanocomposite on mechanical and thermal properties was investigated. As a result of evaluating the thermal characteristics of the PVA/bentonite nanocomposite film based on the concentration of the modified bentonite, it was verified that the thermal characteristics and stability were improved because of interaction between the polymer and the modified nano-clay.

Mechanical and Water Barrier Properties of Soy Protein and Clay Mineral Composite Films

  • Rhim, Jong-Whan;Lee, Jun-Ho;Kwak, Hyo-Sup
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.112-116
    • /
    • 2005
  • Composite films were prepared with soy protein isolate (SPI) and various clay minerals by casting from polymer and clay water suspension. Effects of clay minerals on film thickness, moisture content (MC), tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were tested. Properties including thickness, surface smoothness, and homogeneity of films prepared with organically modified montmorillonite (O-MMT), Wamok clay (W-clay), bentonite, talc powder, and zeolite were comparable to those of control SPI films. TS increased significantly (p<0.05) in films prepared with O-MMT and bentonite, while WVP decreased significantly (p<0.05) in bentonite-added films. WS of most nanocomposite films decreased significantly (p<0.05).

Gas Permeable Properties of Elastomer-Clay Nanocomposite Membrane (유기탄성체-Clay 나노복합재료 막의 기체투과 특성)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Chung Youn-Suk;Lee Young-Moo
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.144-152
    • /
    • 2006
  • Elastomer-clay nanocomposite membranes were prepared by melt intercalation mothod with internal mixer. We are used NMR, Ionomer, SEBS (Styrene Ethylene Butadien styrene Copolymer) as elastomer, and modified clay. Gas barrier property of the elastomer-clay nanocomposites membranes were investigated by a gas permeability of $CO_2,\;O_2,\;N_2$ at room temperature. Gas permeability through the elastomer-clay nanocomposite membranes increased due to increased tortuosity made by intercalation of clay in elastomer.

Synthesis and Characterization of Allyl Ester Resin-Layered Silicate Nanocomposite (알릴 에스터 수지-층상 실리케이트 나노복합재료의 합성과 특성)

  • 팽세웅;김장엽;허완수;조길원;이상원
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • Polymer-clay nanocomposite containing the low amounts of clay shows improved physical, mechanical properties. In this study, allyl ester prepolymer was synthesised by reactions of the diallyl terephthalate monomers and the 1,3-butanediol monomers. Nanocomposites of allyl ester prepolymer and the two kinds of the organically layered silicate were prepared by using the intercalation method as well as the in-situ polymerization method using. By varying the amount of clay content, curing conditions, and feeding conditions. the nanocomposite was studied using X-ray diffraction. From XRD results, allyl ester-Cloisite 30 B nanocomposite made by the in-situ polymerization method shows better exfoliation behavior compared with the intercalation method. It can be said that the transesterification reaction between functional groups (-OH) of intercalant and monomers results in the increased gallery distance. Also mechanical and thermal properties indicate that the dispersity of clay is an important factor for improving physical properties of the nanocomposite.

Optimization of Processing Conditions and Mechanical Properties in Polymer Nanocomposite (고분자 나노복합재료의 가공조건 및 물성 최적화)

  • Nam, Byeong-Uk;Hong, Chae-Hwan;Hwang, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2007
  • Nanocomposites are used as a new class of polymer system and many researchers have been interested in the clay nanocomposite because of its good mechanical properties, heat resistance, flame retardancy, and barrier property. Modified layered silicates as fillers are dispersed at a nanometer-level within a polymer matrix and then new extraordinary properties are observed. In this study, polypropylene/clay nanocomposites were prepared in a twin screw extruder by the melt compounding method. In order to increase the compatibility of PP with the clay, the MAPP was used as a compatibilizer. And organic modified clays were used as a nanometric filler during the melt extrusion. Through the analysis of SAXS, WAXS, the dispersion of clay was investigated. These nanocomposites compared with a neat polypropylene/talc composite have high modulus, low toughness, and reduced shrinkage at the stable dispersion.

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.

A Study on the Preparation of Polyimide/Clay Nanocomposites (폴리이미드/Clay 나노복합재료의 합성에 관한 연구)

  • 이충언;배광수;최현국;이정희;서길수
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2000
  • The preparation of organophilic clay from Na$^{+}$-MMT was achieved by intercalation of alkylammonium bromide. The dispersed organophilic clay in NMP was then added to the solution of polyamic acids (BPDA-PPD, BTDA-ODA/ MPD) in NMP. After curing at 30$0^{\circ}C$, thin films of the polyimide/clay nanocomposite were prepared. The results of X-ray diffraction (XRD) shelved that the d-spacings of dried polyamic acid (PAA)-clay complexes increased in proportion to the chain length of the onium ion and patterns of two kinds of PAA-clay complexes were similar. The d-spacings of approximately 13.2 $\AA$ for the polyimide/clay nanocomposites were independent of the initial onium ion chain length and the species of PAA. From the study of XRD and transmission electron microscopy (TEM), we found layered silicates were dispersed in polyimide matrix and the resultants were intercalated nanocomposites. TGA result showed thermal stability of polyimide nanocomposite improved a little more than the pure polyimide. From the result of dynamic mechanical property, we found that the storage modulus of the nanocomposites had increased by 1.2-1.8 times of the pure polyimides.s.

  • PDF

Electrorheological characteristics of poly(o-ethoxy)aniline nanocomposite

  • Sung Jun Hee;Choi Hyoung Jin
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.193-199
    • /
    • 2004
  • Poly(o-ethoxy)aniline (PEOA)/organoclay nanocomposite was prepared via a solvent intercalation using chloroform as a cosolvent with organically modified montmorillonite (OMMT) clay. The PEOA initially synthesized from a chemical oxidation polymerization in an acidic condition at pH = 1 was intercalated into interlayers of the clay with $25\;wt{\%}$ clay content. Electrical conductivity of the PEOA/OMMT nano­composite was found to be controlled via the intercalating process. The synthesized PEOA/OMMT nano­composite was characterized via an XRD and a TGA, and then adopted as an electrorheological (ER) material. The PEOA/OMMT synthesized with controllable electrical conductivity without a dedoping pro­cess was found to show typical ER characteristics possessing a yield stress from both steady state and dynamic measurements under an applied electric field.

Effect of Nanoclay on Mechanical Properties of Porous Flexible Polyurethane/Clay Nanocomposites (나노점토가 연질 폴리우레탄/점토 다공성 나노복합체의 기계적 특성에 미치는 영향)

  • Ok, Kyung-Min;Kim, Kyu-Heon;Kim, Kyeong-Lok;Kim, Dong-Hyun;Kim, Chun-Hwan;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.366-372
    • /
    • 2013
  • Flexible polyurethane/clay porous nanocomposite foams were synthesized using natural and organically modified montmorillonite clays such as bentonite, closite 10A and closite 30B. The content of nanoclays was varied from 1 to 5 wt% of polyol. Dispersion of clay in Polyurethane(PU) matrix was investigated by X-ray diffraction(Cu-$K{\alpha}$ rays of wavelength $1.54{\AA}$) using an X-ray diffractometer. Also, we determined that the thermal resistance of PU foam increased with added clay, compared to that of pure PU foam. The cell size and the fraction of open cells of the precursor foam were controlled by the addition of clay to the polyurethane foam. Modified clays were found to be more efficient cell openers than the unmodified clay. In addition, the tensile strength and elongation of the polyurethane/clay porous nanocomposites were examined. Increasing clay content increased the mechanical properties of the composites, such as tensile strength, and elongation at break. However, increasing the content over 5 wt% deteriorated the properties of the composites. We found that the nanofillers(bentonite, closite 10A and closite 30B) improved the thermal stability of the nanocomposite foam. The nanocomposite foam containing 3 wt% of closite 30B exhibited the best tensile strength and thermal stability.

Preparation of Nanocomposite by Microwave Processing (마이크로파 공정을 이용한 나노복합체의 제조)

  • Kim, Tae-Hoon;Son, Se-Mo;Park, Ji-Hwan;Seo, Geum-Suk;Park, Seong-Soo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.111-122
    • /
    • 2004
  • The purpose of this study was to investigate the possibility of application of microwave energy for the fabrication of polymer/clay nanocomposite. APES/Clay nanocomposites were prepared at $130^{\circ}C$ for 30min with various amount of MMT or OMMT used the melt-intercalation method applied the classical and microwave heating source. APES/Clay samples were characterized by the means of X-ray diffractometry (XRD), transmitted electron microscopy (TEM) differential scanning calorimetry (DSC), and rheometric dynamic analysis (RDA). It was found that intercalated or exfoliated state of the samples could be controlled by the clay type, clay content, and heating type.

  • PDF