• Title/Summary/Keyword: claudin

Search Result 81, Processing Time 0.042 seconds

Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake;Malavige Romesha Chandanee;Sang-Myeong Lee;Jung Min Heo;Young-Joo Yi
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1403-1413
    • /
    • 2023
  • Objective: Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. Methods: Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. Results: The IAP activity was significantly lower in the ileum samples of the dysbiosis-induced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. Conclusion: The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.

PDZ Domain-containing Proteins at Autotypic Junctions in Myelinating Schwann Cells (수초화 슈반세포 autotypic 세포연접의 PDZ 도메인 보유 단백질)

  • Han, Seongjohn;Park, Hyeongbin;Hong, Soomin;Lee, Donghyun;Choi, Maro;Cho, Jeongmok;Urm, Sang-Hwa;Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • A type of cell junction that is formed between different parts within the same cell is called autotypic cell junction. Autotypic junction proteins form tight junctions found between membrane lamellae of a cell, especially in myelinating glial cells. Some of them have postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains, which interact with the carboxyl (C)-terminal PDZ-binding motif of other proteins. PDZ domains are protein-protein interaction modules that play a role in protein complex assembly. The PDZ domain, which is widespread in bacteria, plants, yeast, metazoans, and Drosophila, allows the assembly of large multi-protein complexes. The multi-protein complexes act in intracellular signal transduction, protein targeting, and membrane polarization. The identified PDZ domain-containing proteins located at autotypic junctions include zonula occludens-1 (ZO-1), ZO-2, pals-1-associated tight junction protein (PATJ), multi-PDZ domain proteins (MUPPs), membrane-associated guanylate kinase inverted 2 (MAGI2), and protease-activated receptor (PAR)-3. PAR-3 interacts with atypical protein kinase C and PAR-6, forming a ternary complex, which plays an important role in the regulation of cell polarity. MAGI2 interacts with ${\alpha}$-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) receptor at excitatory synapses. PATJ is detected in paranodal loops associated with claudin-1. On the other hand, MUPP1 is found in mesaxons and Schmidt-Lanterman incisures with claudin-5. ZO-1, ZO-2, and PAR-3 are found at all three sites. Different distributions of PDZ domain-containing proteins affect the development of autotypic junctions. In this review, we will describe PDZ domain-containing proteins at autotypic tight junctions in myelinating Schwann cells and their roles.

Studies on Antioxidant, Anti-inflammatory and Whitening Effects of Oriental Herbal Extracts (Mix) including Eucommiae cortex (두충을 포함하는 한방추출물(Mix)의 항노화, 항염, 미백 효능 활성에 관한 연구)

  • Choi, Da Hee;Kim, Mi Ran;Kim, Min Young;Kim, Ho Hyun;Park, Sun-Young;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • Recently, due to the increase in skin diseases caused by particulate matter, endocrine disruptor and environmental changes, the trend of development of cosmetic materials has been shifting to the more safe and effective ingredients based on natural materials rather than existing synthetic compounds like steroids and antihistamines. This study aimed to develop a new natural cosmetic materials using oriental herbs such as Eucommiae cortex, Alpinia oxyphylla Miquel and Bombyx batryticatus. First, DPPH assay was performed to examine the antioxidative activity of the herbal extract (Mix) and 98.8% DPPH radical scavenging activity was confirmed at $400{\mu}g/mL$ concentration of it. In order to confirm the whitening efficacy of oriental herbal extracts(mix), the amount of melanin synthesized after stimulation of ${\alpha}-MSH$ with B16F10 cells was measured. Results showed that it was decreased to 27.1% comparing with the only ${\alpha}-MSH$ treated group, which confirmed the whitening efficacy. Also, both nitric oxide(NO) production and iNOS and COX-2 expression were significantly reduced in RAW264.7 macrophages activated by LPS in the presence of the extracts(Mix). The mRNA expression of the inflammatory cytokines such as $IL-1{\alpha}$, $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ was also analyzed to confirm the inhibition effect of the extracts on inflammation. Finally, to confirm the enhancement of skin barrier function, the expression of claudin 1 gene, a tight junction protein, was observed using human keratinocyte HaCaT cells and increased as concentration dependent manner. From these results, it is concluded that the oriental herbal extracts(Mix) containing Eucommiae cortex, Alpinia oxyphylla Miquel and Bombyx batryticatus is effective for antioxidant, anti-inflammation, skin whitening, and skin barrier and thus could be applied as a new natural cosmetic material.

Effects of Aged Black Garlic Extracts on the Tight Junction Permeability and Cell Invasion in Human Gastric Cancer Cells (흑마늘 추출물이 인체위암세포의 tight junction 투과성 조절과 세포 침윤성 억제에 미치는 영향)

  • Shin, Dong-Yeok;Yoon, Moo-Kyoung;Choi, Young-Whan;Gweon, Oh-Cheon;Kim, Jung-In;Choi, Tae-Hyun;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.528-534
    • /
    • 2010
  • Garlic (Allium sativum) has been well-known as a folk remedy for a variety of ailments since ancient times, and it is well documented that enhanced garlic consumption leads to a decrease in incidences of cancer. Tight junctions (TJs) are critical structures for the maintenance of cellular polarity, acting as paracellular permeability barriers and playing an essential role in regulating the diffusion of fluid, electrolytes and macromolecules through the paracellular pathway. Matrix metalloproteinases (MMPs) have been implicated as possible mediators of invasiveness and metastasis in some cancers. In this study, we investigated the potential effects of water extract of aged black garlic (ABG) on the correlation between tightening of TJs and anti-invasive activity in human gastric carcinoma AGS cells. The inhibitory effects of ABG on cell motility and invasiveness were found to be associated with increased tightness of TJs, which was demonstrated by an increase in transepithelial electrical resistance. Additionally, the activities of MMP-2 and -9 in AGS cells were inhibited by treatment with ABG, and this was also correlated with a decrease in the expression of their mRNA and proteins. Furthermore, RT-PCR and immunoblotting results indicated that ABG repressed the levels of the claudin proteins, major components of TJs that play a key role in the control and selectivity of paracellular transport. In conclusion, these results suggest that ABG treatment may inhibit tumor metastasis and invasion, and therefore may act as a dietary source to decrease the risk of developing cancer.

Inhibition of Migration and Invasion of Human Bladder Cancer 5637 cells by Hwangheuk-san (5637 인체 방광암세포의 이동성과 침윤성에 미치는 황흑산(黃黑散)의 영향)

  • Shim, Won-suk;Kim, Min-serh;Park, Sang-eun;Choi, Yung-hyun;Hong, Sang-hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.65-76
    • /
    • 2016
  • Objectives: The purpose of this study was to identify the inhibitory effects of Hwangheuk-san (HHS), a Korean multi-herb formula comprising four medicinal herbs, on cell migration and invasion, two critical cellular processes that are often deregulated during metastasis, using the human bladder cancer 5637 cell line.Methods: Cell viability, motility, and invasion were assessed by 3-(4,5-dimethyl-2 thiazolyl)-2,5-diphnyl-2H-tetrazolium bromide (MTT), wound healing migration, and Transwell assays, respectively. Gene expression was detected by Western blot analysis. In addition, the activities of matrix metalloproteinases (MMPs) and the values for transepithelial electrical resistance (TER) were analyzed using a Gelatinase Activity Assay Kit and an Epithelial Tissue Voltohmmeter, respectively.Results: Our data indicated that within the concentration range that was not cytotoxic, HHS effectively inhibited the cell motility and invasiveness of 5637 cells. HHS markedly decreased the expression and activity of MMP-2 and MMP-9, which was associated with unregulation of tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2. Further investigation revealed that phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT was decreased in HHS-treated 5637 cells, and a PI3K/AKT inhibitor synergistically reduced the inhibition of migration and invasion and also inactivated MMP-2 and MMP-9. Moreover, HHS increased the tightening of tight junctions (TJs), which was demonstrated by an increase in the TER, and reduced the expression the levels of claudin family members (claudin-3 and -4), which are major components involved in the tightening of TJs.Conclusions: The present findings demonstrated that HHS attenuated the migration and invasion of bladder cancer 5637 cells by modulating the activity of the PI3K/Akt signaling pathway and also through TJ tightening.

Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats

  • Dun, Yaoyan;Liu, Min;Chen, Jing;Peng, Danli;Zhao, Haixia;Zhou, Zhiyong;Wang, Ting;Liu, Chaoqi;Guo, Yuhui;Zhang, Changcheng;Yuan, Ding
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2018
  • Background: Saponins from Panax japonicus (SPJ) are the most abundant and main active components of P. japonicus, which replaces ginseng roots in treatment for many kinds of diseases in the minority ethnic group in China. Our previous studies have demonstrated that SPJ has the effects of anti-inflammation through the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-${\kappa}B$) signaling pathways. The present study was designed to investigate whether SPJ can modulate intestinal tight junction barrier in aging rats and further to explore the potential mechanism. Methods: Aging rats had been treated with different doses (10 mg/kg, 30 mg/kg, and 60 mg/kg) of SPJ for 6 mo since they were 18 mo old. After the rats were euthanized, the colonic samples were harvested. Levels of tight junctions (claudin-1 and occludin) were determined by immunohistochemical staining. Levels of proinflammatory cytokines (interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$) were examined by Western blot. NF-${\kappa}B$ and phosphorylation of MAPK signaling pathways were also determined by Western blot. Results: We found that SPJ increased the expression of the tight junction proteins claudin-1 and occludin in the colon of aging rats. Treatment with SPJ decreased the levels of interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$, reduced the phosphorylation of three MAPK isoforms, and inhibited the expression of NF-${\kappa}B$ in the colon of aging rats. Conclusion: The studies demonstrated that SPJ modulates the damage of intestinal epithelial tight junction in aging rats, inhibits inflammation, and downregulates the phosphorylation of the MAPK and $NF-{\kappa}B$ signaling pathways.

Glutamine Deprivation Inhibits Invasion of Human Prostate Carcinoma LnCap Cells through Inactivation of Matrix Metalloproteinases and Modulation of Tight Junctions (글루타민 결핍에 따른 Tight Junction 및 MMPs 활성 조절을 통한 전립선 암세포의 침윤 억제 현상)

  • Shin, Dong Yeok;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1167-1174
    • /
    • 2013
  • Cancer cells exhibit increased demand for glutamine-derived carbons to support anabolic processes. Indeed, the spectrum of glutamine-dependent tumors and the mechanisms through which glutamine supports cancer metabolism remain areas of active investigation. In the present study, we investigated the effects of glutamine deprivation on the correlation between tightening of tight junctions (TJs) and anti-invasive activity in human prostate carcinoma LnCap cells. Glutamine deprivation markedly inhibited cell motility and invasiveness in a time-dependent manner. The anti-invasive activity of glutamine deprivation was associated with an increased tightness of the TJ, which was demonstrated by an increase in transepithelial electrical resistance (TER). The activities of matrix metalloproteinase (MMP)-2 and MMP-9 were inhibited in a time-dependent fashion by glutamine deprivation, which was correlated with a decrease in expression of their mRNA and proteins and up-regulation of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, glutamine deprivation repressed the levels of the claudin family members, which are major components of TJs that play a key role in the control and selectivity of paracellular transport. Moreover, the levels of E-cadherin, a type I transmembrane glycoprotein, and snail, an epithelial to mesenchymal transition regulator and zinc finger transcription factor, were markedly modulated by glutamine deprivation. Taken together, these findings suggest that TJs and MMPs are critical targets of glutamine deprivation-induced anti-invasion in human prostate carcinoma LnCap cells.

Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Choi, Eun-Ok;Cho, Eun-Ju;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Hwang, Hye-Jin;Moon, Sung-Kwon;Son, Chang Gue;Kim, Wun-Jae;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.213-221
    • /
    • 2017
  • Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.

Improvement effect of cooked soybeans on HFD-deteriorated large intestinal health in rat model (쥐 모델에서 고지방사료로 악화된 대장 건강에 대한 콩의 개선 효과)

  • Choi, Jae Ho;Shin, Taekyun;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Do-Youn;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.383-389
    • /
    • 2021
  • Obesity is associated with impaired intestinal epithelial barrier function, which contribute to host systemic inflammation and metabolic dysfunction. Korean traditional foods, fiber-rich bean products, have been various biological activities in anti-inflammatory responses, but has not reported the large intestinal health. In this study, we investigated the intestinal health promoting effect of cooked soybeans (CSB) on high fat diet (HFD)-induced obesity model. SD rat were fed either a HFD or HFD supplemented with 10.6% CSB (HFD+CSB) for animal experimental period. CSB treatment significantly decreased the HFD-induced weights of body and fat. Also, CSB treatment improved HFD-reduced tight junction components (ZO-1, Claudin-1, and Occludin-1) mRNA expression in large intestine tissue. Additionally, histopathological evaluation showed that CSB treatment attenuated the HFD-increased inflammatory cells infiltration and epithelial damages in large intestine tissue. At the genus level, effects of CSB supplement not yet clear, while dietary effects showed differential abundance of several genera including Lactobacillus, Duncaniella, and Alloprevotella. NMDS analysis showed significant microbial shifts by HFD, while CSB did not shift gut microbiota. CSB increased the abundance of the genera Anaerotignum, Enterococcus, Clostridium sensu stricto, and Escherichia/Shigella by linear discriminant analysis effect size analysis, while reduced the abundance of Longicatena and Ligilactobacillus. These findings indicate that CSB supplement improves HFD-deteriorated large intestinal health by the amelioration of tight junction component, while CSB did not shift gut microbiotas.

Clinical Significance of CLDN18.2 Expression in Metastatic Diffuse-Type Gastric Cancer

  • Kim, Seo Ree;Shin, Kabsoo;Park, Jae Myung;Lee, Han Hong;Song, Kyo Yong;Lee, Sung Hak;Kim, Bohyun;Kim, Sang-Yeob;Seo, Junyoung;Kim, Jeong-Oh;Roh, Sang-Young;Kim, In-Ho
    • Journal of Gastric Cancer
    • /
    • v.20 no.4
    • /
    • pp.408-420
    • /
    • 2020
  • Purpose: Isoform 2 of tight junction protein claudin-18 (CLDN18.2) is a potential target for gastric cancer treatment. A treatment targeting CLDN18.2 has shown promising results in gastric cancer. We investigated the clinical significance of CLDN18.2 and other cell-adherens junction molecules (Rho GTPase-activating protein [RhoGAP] and E-cadherin) in metastatic diffuse-type gastric cancer (mDGC). Materials and Methods: We evaluated CLDN18.2, RhoGAP, and E-cadherin expression using two-plex immunofluorescence and quantitative data analysis of H-scores of 77 consecutive mDGC patients who received first-line platinum-based chemotherapy between March 2015 and February 2017. Results: CLDN18.2 and E-cadherin expression was significantly lower in patients with peritoneal metastasis (PM) than those without PM at the time of diagnosis (P=0.010 and 0.013, respectively), whereas it was significantly higher in patients who never developed PM from diagnosis to death than in those who did (P=0.001 and 0.003, respectively). Meanwhile, CLDN18.2 and E-cadherin expression levels were significantly higher in patients with bone metastasis than in those without bone metastasis (P=0.010 and 0.001, respectively). Moreover, we identified a positive correlation between the expression of CLDN18.2 and E-cadherin (P<0.001), RhoGAP and CLDN18.2 (P=0.004), and RhoGAP and E-cadherin (P=0.001). Conversely, CLDN18.2, RhoGAP, and E-cadherin expression was not associated with chemotherapy response and survival. Conclusions: CLDN18.2 expression was reduced in patients with PM but significantly intact in those with bone metastasis. Furthermore, CLDN18.2 expression was positively correlated with other adherens junction molecules, which is clinically associated with mDGC and PM pathogenesis.