DOI QR코드

DOI QR Code

쥐 모델에서 고지방사료로 악화된 대장 건강에 대한 콩의 개선 효과

Improvement effect of cooked soybeans on HFD-deteriorated large intestinal health in rat model

  • Choi, Jae Ho (Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University) ;
  • Shin, Taekyun (Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University) ;
  • Ryu, Myeong Seon (Department of Research and Development, Microbial Institute for Fermentation Industry (MIFI)) ;
  • Yang, Hee-Jong (Department of Research and Development, Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Do-Youn (Department of Research and Development, Microbial Institute for Fermentation Industry (MIFI)) ;
  • Unno, Tatsuya (Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University)
  • 투고 : 2021.09.03
  • 심사 : 2021.10.15
  • 발행 : 2021.12.31

초록

비만은 숙주의 전신 염증 및 대사 기능 장애에 기여하는 장 상피 장벽 기능 저하와 관련이 있다. 한국의 전통 식품으로 식이섬유가 풍부한 콩 제품은 항염증 반응을 비롯한 다양한 생물학적 활성을 나타내어 왔으나 대장 건강에 대해서는 보고된 바가 없다. 본 연구에서는 고지방 식이(HFD)를 섭취한 비만 모델에서 콩(CSB)에 대한 장 건강 증진 효과를 조사하였다. SD 쥐에게 동물 실험 기간 동안 HFD 또는 10.6% CSB가 함유된 HFD (HFD + CSB)를 제공하였다. CSB의 섭취는 HFD로 유발된 체중과 지방 축적 증가를 현저하게 감소시켰다. 또한, CSB의 섭취는 대장 조직에서 HFD에 의해 감소된 밀착 결합 지표(ZO-1, Claudin-1 및 Occludin-1)의 mRNA 발현을 개선시켰다. 또한, 조직병리학적 평가에서도 CSB 섭취는 대장 조직에서 HFD에 의해 증가된 염증 세포 침윤과 대장 상피 조직 붕괴를 개선하는 것으로 나타났다. Genus 수준에서 HFD 섭취에 의해 Lactobacillus, Duncaniella, Alloprevotella 등 미생물 종의 abundance 차이는 확인되었으나, CSB 섭취로 인한 영향은 명확하게 나타나지 않았다. NMDS 분석에서 HFD 섭취에 의해 유의적인 장내미생물 생태 이동을 보여주었지만 CSB 섭취는 차이가 없었다. HFD와 CSB 간 유의적으로 차이가 나타나는 genera를 조사하기 위해 LEfSe를 수행한 결과, CSB는 Anaerotignum, Enterococcus, Clostridium sensu stricto 및 Escherichia/Shigella 속의 풍부함을 증가시킨 반면 Longicatena 및 Ligilactobacillus의 풍부함을 감소시켰다. 이러한 결과는 CSB 섭취는 긴밀한 접합 성분을 개선하여 HFD로 악화된 대장 건강을 개선하는 반면 장내미생물생태에 긍정적인 효과를 미치는지에 대해서는 명확하지 않았다.

Obesity is associated with impaired intestinal epithelial barrier function, which contribute to host systemic inflammation and metabolic dysfunction. Korean traditional foods, fiber-rich bean products, have been various biological activities in anti-inflammatory responses, but has not reported the large intestinal health. In this study, we investigated the intestinal health promoting effect of cooked soybeans (CSB) on high fat diet (HFD)-induced obesity model. SD rat were fed either a HFD or HFD supplemented with 10.6% CSB (HFD+CSB) for animal experimental period. CSB treatment significantly decreased the HFD-induced weights of body and fat. Also, CSB treatment improved HFD-reduced tight junction components (ZO-1, Claudin-1, and Occludin-1) mRNA expression in large intestine tissue. Additionally, histopathological evaluation showed that CSB treatment attenuated the HFD-increased inflammatory cells infiltration and epithelial damages in large intestine tissue. At the genus level, effects of CSB supplement not yet clear, while dietary effects showed differential abundance of several genera including Lactobacillus, Duncaniella, and Alloprevotella. NMDS analysis showed significant microbial shifts by HFD, while CSB did not shift gut microbiota. CSB increased the abundance of the genera Anaerotignum, Enterococcus, Clostridium sensu stricto, and Escherichia/Shigella by linear discriminant analysis effect size analysis, while reduced the abundance of Longicatena and Ligilactobacillus. These findings indicate that CSB supplement improves HFD-deteriorated large intestinal health by the amelioration of tight junction component, while CSB did not shift gut microbiotas.

키워드

과제정보

이 연구는 교육부 및 과학기술정보통신부의 재원으로 한국연구재단(NRF)의 지원을 받아 수행된 기초과학연구 프로그램(2016R1A6A1A03012862) 및 전통문화융합연구사업(NRF-2016M3C1B5907152) 입니다. 실험 시설 및 실험 장비를 제공해주신 제주대학교 친환경농업연구소(SARI)에 감사드립니다.

참고문헌

  1. Kim IS, Kim CH, Yang WS (2021) Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 22: 4054. doi: 10.3390/ijms22084054
  2. Ashaolu TJ, Ashaolu JO, Adeyeye SAO (2021) Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol 130: 677-687. doi: 10.1111/jam.14843
  3. Markowiak-Kopec P, Slizewska K (2020) The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 12: 1107. doi: 10.3390/nu12041107
  4. Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2: 1266-1289. doi: 10.3390/nu2121266
  5. Muller M, Canfora EE, Blaak EE (2018) Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients 10: 275. doi: 10.3390/nu10030275
  6. Chen LR, Ko NY, Chen KH (2019) Isoflavone Supplements for Menopausal Women: A Systematic Review. Nutrients 11: 2649. doi: 10.3390/nu11112649
  7. Abdel-Daim MM, El-Tawil OS, Bungau SG, Atanasov AG (2019) Applications of Antioxidants in Metabolic Disorders and Degenerative Diseases: Mechanistic Approach. Oxid Med Cell Longev 2019: 4179676. doi: 10.1155/2019/4179676
  8. Lanou AJ (2011) Soy foods: are they useful for optimal bone health? Ther Adv Musculoskelet Dis 3: 293-300. doi: 10.1177/1759720X11417749
  9. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5: e47. doi:10.1017/jns.2016.41
  10. Ahmad R, Rah B, Bastola D, Dhawan P, Singh AB (2017) Obesity-induces Organ and Tissue Specific Tight Junction Restructuring and Barrier Deregulation by Claudin Switching. Sci Rep 7: 5125. doi: 10.1038/s41598-017-04989-8
  11. Monk JM, Wu W, Lepp D, Wellings HR, Hutchinson AL, Liddle DM, Graf D, Pauls KP, Robinson LE, Power KA (2019) Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J Nutr Biochem 70: 91-104. doi: 10.1016/j.jnutbio.2019.04.009
  12. Singh V, Muthuramalingam K, Kim YM, Park S, Kim SH, Lee J, Hyun C, Unno T, Cho M (2021) Synbiotic supplementation with prebiotic Schizophyllum commune derived β-(1,3/1,6)-glucan and probiotic concoction benefits gut microbiota and its associated metabolic activities. Appl Biol Chem 64: 1-10. doi: 10.1186/s13765-020-00572-4
  13. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. doi: 10.1128/AEM.01541-09
  14. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-596. doi: 10.1093/nar/gks1219
  15. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267. doi: 10.1128/AEM.00062-07
  16. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12: R60. doi: 10.1186/gb-2011-12-6-r60
  17. Lee JY, Aravinthan A, Park YS, Hwang KY, Seong SI, Hwang K (2016) Supplementation of a Fermented Soybean Extract Reduces Body Mass and Prevents Obesity in High Fat Diet-Induced C57BL/6J Obese Mice. Prev Nutr Food Sci 21: 187-196. doi: 10.3746/pnf.2016.21.3.187
  18. Choi JH, Pichiah PB, Kim MJ, Cha YS (2016) Cheonggukjang, a soybean paste fermented with B. licheniformis-67 prevents weight gain and improves glycemic control in high fat diet induced obese mice. J Clin Biochem Nutr 59: 31-38. doi: 10.3164/jcbn.15-30
  19. Nam YR, Won SB, Chung YS, Kwak CS, Kwon YH (2015) Inhibitory effects of Doenjang, Korean traditional fermented soybean paste, on oxidative stress and inflammation in adipose tissue of mice fed a high-fat diet. Nutr Res Pract 9: 235-241. doi: 10.4162/nrp.2015.9.3.235
  20. Oh HG, Kang YR, Lee HY, Kim JH, Shin EH, Lee BG, Park SH, Moon DI, Kim OJ, Lee IA, Choi J, Lee JE, Park KH, Suh JW (2014) Ameliorative effects of Monascus pilosus-fermented black soybean (Glycine max L. Merrill) on high-fat diet-induced obesity. J Med Food 17: 972-978. doi: 10.1089/jmf.2012.2740
  21. Velasquez MT, Bhathena SJ (2007) Role of dietary soy protein in obesity. Int J Med Sci 4: 72-82. doi: 10.7150/ijms.4.72
  22. Naaz A, Yellayi S, Zakroczymski MA, Bunick D, Doerge DR, Lubahn DB, Helferich WG, Cooke PS (2003) The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144: 3315-3320. doi: 10.1210/en.2003-0076
  23. Jeong DY, Daily JW, Lee GH, Ryu MS, Yang HJ, Jeong SY, Qiu JY, Zhang T, Park S (2020) Short-Term Fermented Soybeans with Bacillus amyloliquefaciens Potentiated Insulin Secretion Capacity and Improved Gut Microbiome Diversity and Intestinal Integrity To Alleviate Asian Type 2 Diabetic Symptoms. J Agric Food Chem 68: 13168-13178. doi: 10.1021/acs.jafc.9b07962
  24. Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S (2020) Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr 11: 77-91. doi: 10.1093/advances/nmz061
  25. Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S (2020) Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr 11: 77-91. doi: 10.1093/advances/nmz061
  26. Woo JK, Choi S, Kang JH, Kim DE, Hurh BS, Jeon JE, Kim SY, Oh SH (2016) Fermented barley and soybean (BS) mixture enhances intestinal barrier function in dextran sulfate sodium (DSS)-induced colitis mouse model. BMC Complement Altern Med 16: 498. doi: 10.1186/s12906-016-1479-0
  27. Catalan N, Villasante A, Wacyk J, Ramirez C, Romero J (2018) Fermented Soybean Meal Increases Lactic Acid Bacteria in Gut Microbiota of Atlantic Salmon (Salmo salar). Probiotics Antimicrob Proteins 10: 566-576. doi: 10.1007/s12602-017-9366-7
  28. Kim JH, Won YS, Cho HD, Hong SM, Moon KD, Seo KI (2020) Protective Effect of Prunus mume Fermented with Mixed Lactic Acid Bacteria in Dextran Sodium Sulfate-Induced Colitis. Foods 10: 58. doi: 10.3390/foods10010058
  29. Kaakoush NO (2015) Insights into the Role of Erysipelotrichaceae in the Human Host. Front Cell Infect Microbiol 5: 84. doi: 10.3389/fcimb.2015.00084
  30. Ueki A, Goto K, Ohtaki Y, Kaku N, Ueki K (2017) Description of Anaerotignum aminivorans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor, and reclassification of Clostridium propionicum, Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus Anaerotignum. Int J Syst Evol Microbiol 67: 4146-4153. doi:10.1099/ijsem.0.002268
  31. Baldelli V, Scaldaferri F, Putignani L, Del Chierico F (2021) The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 9: 10.3390/microorganisms9040697