• Title/Summary/Keyword: classroom epistemology

Search Result 6, Processing Time 0.024 seconds

Practical Epistemology Analysis on Epistemic Process in Science Learning (과학 학습의 지식구성 과정에 대한 실제적 인식론 분석)

  • Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.173-187
    • /
    • 2018
  • The purpose of this study is to clarify the specific terms of epistemic and epistemological by reviewing the literature on epistemological understanding of science learning, examine the necessity of epistemic discourse analysis based on the view of social epistemology, and provide an exemplar of practical epistemology analysis for elementary children's science learning. The review was conducted in terms of meaning and terminology about epistemic or epistemological approach to science learning, epistemology of/for science, and methodologies for epistemic discourse analysis. As an alternative way of epistemic discourse analysis in science classroom I employed practical epistemology analysis (by Wickman), evidence-explanation continuum (by Duschl), and DREEC diagram (by Maeng et al.). The methods were administered to an elementary science class for the third grade where children observed sedimentary rocks. Through the outcomes of analysis I sought to understand the processes how children collected data by observation, identified evidence, and constructed explanations about rocks. During the process of practical epistemology analysis the cases of four categories, such as encounter, stand-fast, gap, and relation, were identified. The sequence of encounter, stand fast, gap, and relation showed how children observed sedimentary rocks and how they came to learn the difference among the rocks. The epistemic features of children's observation discourse, although different from scientists' discourses during their own practices, showed data-only conversation, evidence-driven conversation, or explanation inducing conversation. Thus I argue even elementary children are able to construct their own knowledge and their epistemic practices are productive.

On the difference between 'weight' and "heaviness' in the sense of Piaget (Piaget의 의미로서 무게와 무거움의 차이에 대하여)

  • Yoo, Yoon-Jae
    • The Mathematical Education
    • /
    • v.47 no.2
    • /
    • pp.221-224
    • /
    • 2008
  • The article shows that the concept 'weight' and the concept 'heaviness' give rise to different abstractions in the sense of Piaget and that these two concepts are differentiated by set-theoretic devices. The failure of differentiation of these two concepts 'weight' and the 'heaviness' can cause the failure of learning of the difference between reflective abstraction and empirical reflective abstraction. To explain the Piagetian abstrcation in a classroom, the author suggests to use the concept 'color' instead of the concept 'weigtht'.

  • PDF

Dualism in mathematics classroom and some teaching strategies for overcoming students' dualistic beliefs (수학 교실의 이원론적 신념과 그 극복을 위한 교수방안 고찰)

  • Lee, Jihyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.3
    • /
    • pp.261-275
    • /
    • 2016
  • Many students have dualistic beliefs about mathematics and its learning- for example, there is always just one right answer in mathematics and their role in the classroom is receiving and absorbing knowledge from teacher and textbook. This article investigated some epistemic implications and limitations of common mathematics teaching practices, which often present mathematical facts(or procedures) and treat students' errors in a certain and absolute way. Langer and Piper's (1987) experiment and Oliveira et al.'s (2012) study suggested that presenting knowledge in conditional language which allows uncertainty can foster students' productive epistemological beliefs. Changing the focus and patterns of classroom communication about students' errors could help students to overcome their dualistic beliefs. This discussion will contribute to analyze the implicit epistemic messages conveyed by mathematics instructions and to investigate teaching strategies for stimulating students' epistemic development in mathematics.

Research on the effects of Subject Matter Knowledge(SMK) on Pedagogical Content Knowledge(PCK) of secondary beginning science teachers in classroom teaching (교실 수업에서 초임 과학교사의 교과내용지식이 내용교수지식에 주는 영향에 대한 연구)

  • Kwak, Young-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.6
    • /
    • pp.611-625
    • /
    • 2009
  • The purpose of this research is to investigate the characteristics of beginning science teachers' subject matter knowledge (SMK) as revealed in their classroom teaching methods. In this research, we explored six beginning teachers' classroom teaching episodes on the 'work and energy' unit. Using open-ended interviews with the teachers and group discussions taking place on a regular basis to analyze and compare the classes of six beginning teachers, we extracted the features of beginning science teachers' SMK. Using grounded theory methods, the characteristics of beginning science teachers' SMK drawn from this research are: (1) beginning teachers' positivistic epistemology on science, (2) claiming the teacher's authority based on rich subject content knowledge, and (3) beginning teachers' science elitism. These epistemological characteristics are realized such PCK as (1) representational errors caused by the teacher's own science misconception, (2) doing harm to students with too much content knowledge, (3) sporadic content presentation lacking a focus, and (4) surplus class hours with lack of effective science teaching explanations. Suggestions for alternative perspectives on science SMK are presented by experienced teachers. In conclusion, science teachers' SMK is necessary, but not sufficient, for effective teaching. Science teachers' SMK does have an effect on science teaching, mediated by other types of teacher knowledge. The beginning teachers need a systematic support to transform their SMK into a viable PCK.

A Mathematics Teacher's Reflective Practice as a Process of Professional Development (전문성 신장 과정으로서의 한 수학교사의 성찰적 실천)

  • Kim, Dong-Won
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.735-760
    • /
    • 2009
  • Most of every teachers' life is occupied with his or her instruction, and a classroom is a laboratory for mutual development between teacher and students also. Namely, a teacher's professionalism can be enhanced by circulations of continual reflection, experiment, verification in the laboratory. Professional development is pursued primarily through teachers' reflective practices, especially instruction practices which is grounded on $Sch\ddot{o}n's$ epistemology of practices. And a thorough penetration about situations or realities and an exact understanding about students that are now being faced are foundations of reflective practices. In this study, at first, we explored the implications of earlier studies for discussing a teacher's practice. We could found two essential consequences through reviewing existing studies about classroom and instructions. One is a calling upon transition of perspectives about instruction, and the other is a suggestion of necessity of a teachers' reflective practices. Subsequently, we will talking about an instance of a middle school mathematics teacher's practices. We observed her instructions for a year. She has created her own practical knowledges through circulation of reflection and practices over the years. In her classroom, there were three mutual interaction structures included in a rich expressive environments. The first one is students' thinking and justifying in their seats. The second is a student's explaining at his or her feet. The last is a student's coming out to solve and explain problem. The main substances of her practical know ledges are creating of interaction structures and facilitating students' spontaneous changes. And the endeavor and experiment for diagnosing trouble and finding alternative when she came across an obstacles are also main elements of her practical knowledges Now, we can interpret her process of creating practical knowledge as a process of self-directed professional development when the fact that reflection and practices are the kernel of a teacher's professional development is taken into account.

  • PDF

Analysis of Enacted Curriculum through Classroom Observation of Integrated Science Teaching in 2015 Revised Curriculum (2015개정 통합과학 수업관찰을 통한 실행된 교육과정 분석)

  • Kwak, Youngsun;Shin, Youngjoon
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.379-388
    • /
    • 2019
  • The purpose of this study is to derive implications for support plans for the settlement of the Integrated Science subject based on observations and analyses of integrated science lessons implemented in schools since 2018. For this purpose, we observed and analyzed the lessons for the same achievement standard [10 Integrated Science 07-01] implemented by four science teachers with different science majors. The features of integrated science classes were analyzed in light of curriculum reconstruction, science competency development, learner-centered participatory instruction, and process-centered evaluation aspects. For example, in terms of curriculum reconstruction, science teachers have been reorganizing achievement standards into three/four lessons, optimizing learning contents based on core concepts, and helping students' understanding of cross-cutting concepts between science areas. Regarding science competency development, teachers focused their instruction on students' cultivation of diverse science competencies closely related to the achievement standard and development of the epistemology of science. In addition, teachers emphasized student activities and teachers' role as facilitator of learning to create learner-centered participatory classes, as well as assessment during lessons with feedbacks, etc. Based on the results, we suggested and discussed ways to support the settlement of the integrated science curriculum including the need for a teacher learning community, support for process-centered assessment, and the need to develop an authentic integrated science curriculum.