수학 교실의 이원론적 신념과 그 극복을 위한 교수방안 고찰

Dualism in mathematics classroom and some teaching strategies for overcoming students' dualistic beliefs

  • 이지현 (인천대학교 수학교육과)
  • 투고 : 2016.06.10
  • 심사 : 2016.09.12
  • 발행 : 2016.09.30

초록

많은 학생들이 수학에는 하나의 정답이 존재하며, 수학 수업은 교사로부터 문제를 푸는 방법을 전달받는 수동적 과정이라는 이원론적 신념을 가지고 있다. 이 연구는 인식론적 신념의 개념화와 발달에 대한 교육심리학의 여러 연구를 고찰하고, 이를 바탕으로 수학적 사실 및 절차를 절대적이고 확실한 것으로 제시하며 학생의 오류도 절대적인 방식으로 다루는 통상적인 수학 교수 관행의 인식론적 한계를 살펴보고 그에 대한 대안을 탐색하였다. Langer와 Piper(1987)의 실험 및 Oliveira 외(2012) 등의 교실 관찰 연구는 교사가 지식을 불확실성을 허용하는 조건부적 언어로 제시하고 논의하는 것이 학생들의 인식론적 신념을 생산적인 방향으로 유도할 수 있다는 가능성을 제시하고 있다. 한편, 학생의 오류에 대한 교실 의사소통의 초점과 패턴의 변화는 수학 교실을 지배하는 이원론적 신념의 극복에 도움이 될 수 있다. 이상의 논의는 수학 수업이 암묵적으로 전달하는 인식론적 메시지의 분석 및 학생들의 인식론적 신념 발달을 자극하는 교수 전략을 탐색하는 데 토대를 제공할 수 있을 것이다.

Many students have dualistic beliefs about mathematics and its learning- for example, there is always just one right answer in mathematics and their role in the classroom is receiving and absorbing knowledge from teacher and textbook. This article investigated some epistemic implications and limitations of common mathematics teaching practices, which often present mathematical facts(or procedures) and treat students' errors in a certain and absolute way. Langer and Piper's (1987) experiment and Oliveira et al.'s (2012) study suggested that presenting knowledge in conditional language which allows uncertainty can foster students' productive epistemological beliefs. Changing the focus and patterns of classroom communication about students' errors could help students to overcome their dualistic beliefs. This discussion will contribute to analyze the implicit epistemic messages conveyed by mathematics instructions and to investigate teaching strategies for stimulating students' epistemic development in mathematics.

키워드

참고문헌

  1. 김창일, 유기종(2015). 좋은 수학 수업에 대한 고등학생의 집단 간 인식 비교. 한국학교수학회논문집, 18(1), 83-102.
  2. 이지현(2014). 정의 없이 정의 가르치기. 수학교육학연구, 24(3), 311-331.
  3. 한경화, 강순자, 정인철(2005). 수학 교실의 사회적 규범이 수학적 신념에 미치는 영향. 한국학교수학회논문집, 8(3), 343-356.
  4. Alro, H., Skovsmose, O. (1996). On the right track. For the Learning of Mathematics, 16(1), 2-22.
  5. Ball, D. L. (1991). What's all this talk about "discourse"?. Arithmetic Teacher, 39(3), 44-48.
  6. Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 171-200). Westport, CT: Ablex.
  7. Borasi, R. (1994). Capitalizing on errors as "springboards for inquiry": A teaching experiment. Journal for Research in Mathematics Education, 25(2), 166-208. https://doi.org/10.2307/749507
  8. Borba, M. C., & Skovsmose, O. (1997). The ideology of certainty in mathematics education. For the learning of Mathematics, 17(3), 17-23.
  9. Boyes, M. C., & Chandler, M. (1992). Cognitive development, epistemic doubt, and identity formation in adolescence. Journal of Youth and Adolescence, 21(3), 277-303. https://doi.org/10.1007/BF01537019
  10. Chandler, M. J., Hallett, D., & Sokol, B. W. (2002). Competing claims about competing knowledge claims. In B. K. Hofer and P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 145-68). Mahwah, NJ: Lawrence Erlbaum Associates.
  11. Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23, 167-180. https://doi.org/10.1207/s15326985ep2302_6
  12. Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554-567. https://doi.org/10.1002/sce.1023
  13. Entwistle, N. J., & Peterson, E. R. (2004). Conceptions of learning and knowledge in higher education: Relationships with study behaviour and influences of learning environments. International Journal of Educational Research, 41(6), 407-428. doi:10.1016/j.ijer.2005.08.009
  14. Ernest, P. (2015). The problem of certainty in mathematics. Educational Studies in Mathematics, 92(3), 379-393.
  15. Feucht, F. C. (2010). Epistemic climate in elementary classrooms. In L.D. Bendixen & F. C. Feucht (Eds.), Personal epistemology in the classroom: Theory, research, and the educational implications.(pp. 55-93). New York: Cambridge University Press.
  16. Frank, M. L. (1988). Problem solving and mathematical beliefs. Arithmetic Teacher, 35(5), 32-34.
  17. Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3(3/4), 413-435. https://doi.org/10.1007/BF00302305
  18. Garofalo, J. (1989). Beliefs and their influence on mathematical performance. Mathematics Teacher, 82(7), 502-505.
  19. Goffman, E. (1959). The presentation of everyday life. New York: Anchor Books.
  20. Greiffenhagen, C., & Sharrock, W. (2011). Does mathematics look certain in the front, but fallible in the back?. Social Studies of Science, 41(6), 839-866. https://doi.org/10.1177/0306312711424789
  21. Handa, Y. (2013). What does understanding mathematics mean for teachers?: Relationship as a metaphor for knowing. New York and London: Taylor & Francis.
  22. Hersh, R. (1991). Mathematics has a front and a back. Synthese, 88(2), 127-133. https://doi.org/10.1007/BF00567741
  23. Higgins, K. M. (1997). The effect of year-long instruction in mathematical problem solving on middle-school students' attitudes, beliefs, and abilities. Journal of Experimental Education, 66(1), 5-28. https://doi.org/10.1080/00220979709601392
  24. Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88-140. https://doi.org/10.3102/00346543067001088
  25. Hofer, B. K. (2001). Personal epistemology research: Implications for learning and teaching. Educational Psychology Review, 13(4), 353-383. https://doi.org/10.1023/A:1011965830686
  26. Johnston, P., Woodside-Jiron, H., & Day, J. (2001). Teaching and learning literate epistemologies. Journal of Educational Psychology, 93(1), 223-33. https://doi.org/10.1037/0022-0663.93.1.223
  27. Kesler, R. (1985). Teachers' instructional behavior related to their conceptions of teaching and mathematics and their level of dogmatism: Four case studies. Doctoral dissertation, University of Georgia.
  28. Langer, E. J., Piper, A. I. (1987). The prevention of mindlessness. Journal of Personality and Social Psychology, 53(2), 280-287. https://doi.org/10.1037/0022-3514.53.2.280
  29. Langer, E., Hatem, M., Joss, J., & Howell, M. (1989). Conditional teaching and mindful learning: The role of uncertainty in education. Creativity Research Journal, 2(3), 139-150. https://doi.org/10.1080/10400418909534311
  30. Langer, E. (1990). Mindfulness. 마음챙김. 이양원 역. 서울: 동인
  31. Langer, E. J. (1993). A mindful education. Educational Psychologist, 28(1), 43-50. https://doi.org/10.1207/s15326985ep2801_4
  32. McGalliard, W. A. (1983). Selected factors in the conceptual systems of geometry teachers: Four case studies. Doctoral dissertation, University of Georgia.
  33. Muis, K. R. (2004). Personal epistemology and mathematics: A critical review and synthesis of research. Review of educational research, 74(3), 317-377. https://doi.org/10.3102/00346543074003317
  34. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  35. Perry, W. G., Jr. (1968). Patterns of development in thought and values of students in a liberal arts college: A validation of a scheme. Cambridge, MA: Bureau of Study Counsel, Harvard University. (ERIC Document Reproduction Service No. ED 024315)
  36. Perry, W. G., Jr. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York: Holt, Rinehart & Winston.
  37. Perry, W. G., Jr. (1997). Cognitive and ethical growth: The making of meaning. In Altbach, P. G., Arnold, K., King, I. C.(Eds.), College student development and academic life: Psychological, intellectual, social and moral issues(pp.76-116). New York: Garland Publishing.
  38. Rott, B., Leuders, T., & Stahl, E. (2014). Is Mathematical Knowledge Certain?-Are You Sure? An Interview Study to Investigate Epistemic Beliefs. Mathematica Didactica, 37, 118-132.
  39. Santagata, R., & Bray, W. (2015). Professional development processes that promote teacher change: the case of a video-based program focused on leveraging students' mathematical errors. Professional Development in Education, 42(4), 1-22.
  40. Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
  41. Schoenfeld, A. H. (1989). Explorations of students' mathematical beliefs and behavior. Journal for research in mathematics education, 20(4), 338-355. https://doi.org/10.2307/749440
  42. Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498-504. https://doi.org/10.1037/0022-0663.82.3.498
  43. Schommer, M. (1993). Epistemological development and academic performance among secondary students. Journal of educational psychology, 85(3), 406. https://doi.org/10.1037/0022-0663.85.3.406
  44. Schommer, M. (1994). An emerging conceptualization of epistemological beliefs and their role in learning. In R. Garner & P. A. Alexander (Eds.), Beliefs about text and instruction with text (pp. 25-40). Hillsdale, NJ: Erlbaum.
  45. Schommer, M. & Hutter, R. (1995). The relationship between epistemological beliefs and controversial day-to-day issues. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.
  46. Schommer, M. (1998). The influence of age and education on epistemological beliefs. British Journal of Educational Psychology, 68(4), 551-562. https://doi.org/10.1111/j.2044-8279.1998.tb01311.x
  47. Schommer-Aikins, M. (2008). Applying the theory of an epistemological belief system to the investigation of students' and professors' mathematical beliefs. In M. S. Khine (Ed.), Knowing, knowledge and beliefs: Epistemological studies across diverse cultures (pp. 303-324). Netherlands: Springer.
  48. Schraw, G., & Olafson, L. (2002). Teacher's epistemological worldviews and educational practices. Issues in Education, 8(2), 99-148.
  49. Spangler, D. A. (1992). Assessing students' beliefs about mathematics. Mathematics Educator, 3(1), 19-23.
  50. Stipek, D. J., Givvin, K. B., Salmon, J. M., & MacGyvers, V. L. (2001). Teachers' beliefs and practices related to mathematics instruction. Teaching and teacher education, 17(2), 213-226. https://doi.org/10.1016/S0742-051X(00)00052-4
  51. Stodolsky, S. S. (1985). Telling math: Origins of math aversion and anxiety. Educational Psychologist, 20(3), 125-133. https://doi.org/10.1207/s15326985ep2003_2
  52. Ritchhart, R., & Langer, E. (1997). Teaching Mathematical Procedures Mindfully: Exploring the Conditional Presentation of Information in Mathematics. In J. A. Dossey, J. O. Swafford, M. Parmantie, & A. E. Dossey (Eds.), Proceedings of the Nineteenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
  53. Oliveira, A. W., Akerson, V. L., Colak, H., Pongsanon, K., & Genel, A. (2012). The implicit communication of nature of science and epistemology during inquiry discussion. Science Education, 96(4), 652-684. doi:10.1002/sce.21005
  54. Tsai, C.C. (2002). Nested epistemologies: Science teachers' beliefs of teaching, learning and science. International Journal of Science Education, 24(8), 771-783. https://doi.org/10.1080/09500690110049132
  55. Tulis, M. (2013). Error management behavior in classrooms: Teachers' responses to student mistakes. Teaching and Teacher Education, 33, 56-68. doi:10.1016/j.tate.2013.02.003.
  56. White, B. C. (2000). Pre-service teachers' epistemology viewed through perspectives on problematic classroom situations. Journal of Education for Teaching: International Research and Pedagogy, 26(3), 279-305. https://doi.org/10.1080/713676891