International Journal of Fuzzy Logic and Intelligent Systems
/
제1권1호
/
pp.119-124
/
2001
In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.
퍼지논리를 적용하기 위해서는 두가지 과제가 이루어져야 하는데 그것은 퍼지룰의 유도와 맴버쉽함수의 결정이다. 이 과제는 어렵고 또한 시간을 요하게 된다. 본 논문에서는 문제에 적용 가능한 멤버쉽함수와 퍼지룰을 자동으로 유도하기 위한 알고리즘적 방법을 제시하고 있다. 이 알고리즘적 방법은 샘플을 구분하는 엔트로피 최소화의 원리에 입각하고 있다. 멤버쉽함수는 샘플을 연속적으로 구분하여 이루어지며 퍼지룰 또한 엔트로피 최소화 원리에 의하여 이루어진다. 퍼지룰의 유도에서는 룰 비중 또한 같이 계산된다. 결정 문제에 적용을 위한 추론법 및 방법도 논의되었다.
Abstract - In this paper, a segmentation method for brain Magnetic Resonance(MR) image using region clustering technique with statistical distribution of gradient image and fuzzy rules is described. The brain MRI consists of gray matter and white matter, cerebrospinal fluid. But due to noise, overlap, vagueness, and various parameters, segmentation of MR image is a very difficult task. We use gradient information rather than intensity directly from the MR images and find appropriate thresholds for region classification using gradient approximation, rayleigh distribution function, region clustering, and merging techniques. And then, we propose the adaptive fuzzy rules in order to extract anatomical structures and diseases from brain MR image data. The experimental results shows that the proposed segmentation algorithm given better performance than traditional segmentation techniques.
CSR(Common Structure Rules) enter into force on $1^{st}$ April 2006. Generally for double hull tankers of less than 150m in length, the Rules of the individual Classification Society are to be applied. Where high tensile stresses act through an intermediate plate, increased fillet welds or penetration welds are to be used longitudinal/transverse bulkhead primary support member end connections to the double bottom. If workers have begun to make used of established procedures between corrugated BHD and lower stool joint, first to welding on groove of face and then it has to gouging to blow on groove of root. So amount of man-hour increased, productivity secreased.
In this paper, a framework for implementing UFIS (Unified Fuzzy rule-based knowledge Inference System) is presented. First, fuzzy clustering and fuzzy rules deal with the presence of the knowledge in DB (DataBase) and its value is presented with a value between 0 and 1. Second, RDB (Relational DB) and SQL queries provide more flexible functionality fur knowledge management than the conventional non-fuzzy knowledge management systems. Therefore, the obtained fuzzy rules offer the user additional information to be added to the query with the purpose of guiding the search and improving the retrieval in knowledge base and/ or rule base. The framework can be used as DM (Data Mining) and ES (Expert Systems) development and easily integrated with conventional KMS (Knowledge Management Systems) and ES.
This paper presents the automatic construction of fuzzy rule-based systems for diagnosing the faults of complex systems. Generally, fuzzy systems work well when we can use expert's experience to articulate fuzzy IF-THEN rules and memberships for fuzzy sets. When we cannot do this, we should generate the fuzzy rules and membership functions for fuzzy sets directly from experimental data. In this paper, we propose a new method on how to extract fuzzy sets and fuzzy rules. We also introduce an efficient fine-tunning algorithm of the parameters of membership functions.
This paper introduces a new type of determining factor for Pseudo Random Strings (PRS). This classification depends upon a mathematical property called Finite Induction (FI). FI is similar to a Markov Model in that it presents a model of the sequence under consideration and determines the generating rules for this sequence. If these rules obey certain criteria, then we call the sequence generating these rules FI a PRS. We also consider the relationship of these kinds of PRS's to Good/deBruijn graphs and Linear Feedback Shift Registers (LFSR). We show that binary sequences from these special graphs have the FI property. We also show how such FI PRS's can be generated without consideration of the Hamiltonian cycles of the Good/deBruijn graphs. The FI PRS's also have maximum Shannon entropy, while sequences from LFSR's do not, nor are such sequences FI random.
This study is an attempt to provide some helpful data for the design and the implementation of the expert system for the book-classification based on the analysis of various cases of the classification-expert system models. Following the introduction, the concepts and some features of an expert system were overviewed in the second chapter, on the basis of which the following concrete cases were introduced and analyzed in the third chapter : (1) ACN System for NC, (2) Expert System for NDC, (3) Expert System for UDC, (4) Herba Medica System, (5) Expert System for IPC, (6) Stratcyclode Project, (7) Expert System for Classification of INIS Database, (8) AutoBC System, and etc. In the conclusion, for the development of the classification-expert system, it was turned out that constructing a new system by using an AI language such as Prolog or LISP is more desirable than employing any one of expert system shells. Together it is necessary for the following requirements to be met : (1) The subject concept of a document elicited should be accurate. (2) Not only a domain knowledge but also the knowledge covering all the subjects should be represented in the knowledge-bases. (3) The knowledge-bases should be organized in such a way that the characteristics of the knowledge about classification should be well defined. (4) rule-base consisting of accurate rules about classification should be made. (5) It should be possible for classification code wanted to be generated immediately.
동적이고 비정형적인 환경에서 작업을 수행하기 위해 인공유기체를 이용하는 응용 분야가 빠른 속도로 확대되고 있다. 이러한 분야에서 인공유기체의 행동 지식 표현법으로 일반적인 프로그래밍 또는 전통적인 인공지능 방법을 사용하면, 예측치 못한 상황으로 인한 빈번한 변경과 나쁜 응답성의 문제가 발생한다. 이들 문제들을 기계학습적으로 해결하기 위한 방법으로는 유전자 프로그래밍과 진화 신경망이 대표적이다. 그러나 아직까지도 인공유기체의 학습방법이 문제가 되고 있으며, 같은 환경 속에 서식하는 인공유기체의 종이 같아서 여러생명체를 대표할수 없는 문제점이 있다. 본 논문에서는 학습의 속도와 질을 향상시키기 위해 강화역전파 신경망과 분류규칙을 이용하였으며, 한 환경속에 서식하는 인공유기체의 종을 달리하였다. 제안된 모델을 평가하기 위해서 이종간 인공유기체 집단이 한 가상환경속에서 서로 경쟁하면서 생활하는 시뮬레이터를 설계 및 구현하였고, 그들의 행동진화를 수행결과로 보여주었으며, 타시스템과의 비교분석을 하였다. 결과적으로, 학습의 속도와 질적인 면에서 제안된 모델이 모두 우수한 것을 확인하였다. 본 모델의 특징으로는, 유전자 알고리즘에 의해서 염색체에 표현된 분류 규칙들과 신경망의 학습이 동시에 수행되며, 분류 규칙과 강화역전파 신경망의 2단계의 처리 과정으로 인하여 학습 능력이 강화된다는 점이다.
For detecting an intrusion based on the anomaly of a user's activities, previous works are concentrated on statistical techniques or frequent episode mining in order to analyze an audit data. But, since they mainly analyze the average behaviour of user's activities, some anomalies can be detected inaccurately. Therefore, we propose an anomaly detection method that utilizes an associative classification for modelling intrusion detection. Finally, we proof that a prediction model built from associative classification method yields better accuracy than a prediction model built from a traditional methods by experimental results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.