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ABSTRACT

In order to apply fuzzy logic, two major tasks need to be performed :the derivation of fuzzy rules and the deter-
mination of membership functions. These tasks are often difficult and time-consuming. This paper presents an
algorithmic method for generating membership functions and fuzzy rules applicable to decision-making problems;
the method includes an entropy minimization for clustering analog samples. Membership functions are derived by
partitioning the variables into desired number of fuzzy terms, and fuzzy rules are obtained using minimum entropy
clustering. [n the rule derivation process, rule weights are also calculated. Inference and defuzzification for classifi-
cation problems are also discussed.
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1. Introduction control methods had previously been utilized. In such

control problems, the value of fuzzy logic is found in

Fuzzy logic has been applied with reasonable success that vague meanings and relationships, expressed in
to many control problems for which only conventional ordinary language, can be effectively formulated. The

fuzzy inference procedure includes the translation of
g AZ|AAY BLENFT an analog value into membership grades which are
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defined by the membership functions of fuzzy terms.

Although fuzzy logic theory was introduced in the
1960s, its application to industrial control emerged in
the early 1970s with a procedure for the control of a
steam engine[l]. Since then, fuzzy logic has been
applied in other control areas. Currently, fuzzy logic
is involved in many induvstrial and commercial
applications and home appliances. Even in decision-
making problems such as power fault identification
which involves not-well-defined conditions and seemingly
unrelated parameters, fuzzy logic is being applied
[2, 3]. To apply fuzzy logic, we must define fuzzy
rules, fuzzy terms, and membership functions. It is
often difficult and time-consuming to derive these
rules and membership functions; by devising an auto-
matic procedure for deriving membership functions
and fuzzy rules, therefore, we can make fuzzy logic
applications much easier.

An estimation model for fuzzy membership functions
was introduced using fuzzy ensemble membership
apportionment learning estimators [4]. However, this
inodel estimates only membership functions and does
not produce fuzzy rules. Recently, a “table-lookup”
scheme for fuzzy rule generation for numerical
input-output pairs was suggested [5]. This scheme,
which aims to extract a rule for each input-output
pair, however, determines the partitions of the
domain interval and membership functions in an ad
hoc manner. Al and neural network technique have
also been applied to extract fuzzy rules from numerical
data, however, they require the number of divisions in
the input variable be defined in advance(6].

Clearly, an automatic process which can generate
both membership functions and fuzzy rules directly
from experienced sample data would be of consider-
ably more value. Advanced applications such as
learning fuzzy control need an adaptive method of
representing fuzzy knowledge, so an attempt to
automate fuzzy logic applications is a timely response
to an important subject. The primary objective of this

paper is to develop an algorithm which is capable of

automating fuzzy logic applications in classification
and decision-making problems. Using an algorithmic
approach which utilizes the concept of entropy
minimization, membership functions are generated

and, fuzzy rules with rule weights are determined.

II. Formation of Structured Longuistic
Variable

In fuzzy logic applications, membership functions
have typically been determined by human experts. Ac-
cordingly, experience and common-sense are the two
leading guidelines for determining the membership
functions. Similarly, fuzzy rules have been devised
from expert opinion. The fundamental problem with
this approach is that the rules derived by the expert
using experience and common sense are not always
most suitable for an automatic controller. Further-
more, there is no way to assess whether the rule cor-
rectly and optimally represents the experienced sampile
data. Therefore, we introduce an algorithmic approach
which, without human intervention, can be utilized
for fuzzy logic applications. Guided by a theorem of
maximum information extraction, this algorithmic
approach generates membership functions and fuzzy
rules from experienced sample data.

The automation of membership function derivation
can be considered as an attempt to draw a structured
linguistic variable in which fuzzy terms and their
meanings can be characterized by an algorithm. One
of the basic tools for fuzzy logic is the linguistic vari-
able, i.e., a variable whose values are not numbers
but words in a natural or artificial languagel7]. A
linguistic variable is characterized by a quintuple
,TG), U, G, M),

where,

r:the name of the variable, its “label” or, sometimes,
its value R

T (r):the term set of r, that is, the set of names in 7

U :the range of T(»)

G :a syntactic rule for generating R, the values of »
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M:a semantic rule for associating each R with its

meaning

A particular R, that is a name generated by G, is
called a f2rm. For example, if a linguistic variable 7 is
defined with the label “age” in U =][0, 100], then the
terms of this linguistic variable, generated by the rule
G (7), could be called “old”, “middle”, “young”, and
so on. Therefore, T(r) defines the term set of the
variable » with T (age) ={old, middle, young}. M (»)
is the rule that assigns meanings to these terms. A
linguistic variable 7 is called structured if the term set
T(r) and the meaning M (r) can be characterized
algorithmically. For a structured variable, M(r) and
T(r) can be regarded as algorithms which generate
the terms and the meanings associated with them.

The above description of a linguistic variable can
be rephrased as follows:G(») determines the fuzzy
terms from a variable and M () determines the mem-
bership functions of the fuzzy terms. Once the num-
ber of fuzzy terms is decided, the only unknown item
in the linguistic variable is the rule M(»). The
algorithmic approach in this paper decides the rule
for membership function formation;in a theoretical
sense, therefore, one object of this paper is to draw a
structured linguistic variable.

In industrial control application of fuzzy logic, a
set of terms drawn from linguistic variables has been
used to describe the states of the process. In particular,
the error value and the change in error value are
quantized into a number of points covering the range
in U, and the values are then assigned as grades of
membership in 3, 7, or another number of subsets[8].
However, the algorithmic approach of this paper has
some constraints in the number of fuzzy terms;it
generates fuzzy terms in power of 2’s, i.e., 2, 4, 6, 8,
and so on. Therefore, in this paper, the following
8-term set will be generated:PB, Positive Big;PM,
Positive Medium;PS, Positive Small;PZ, Positive
Zero;NZ, Negative Zero;NS, Negative Small; NM,
Negative Medium;and NB, Negative Big. This

approach, in addition, provides an automatic mech-
anism for generating fuzzy rules from the term set 7

(r) and the meaning M (»).
. Entropy Concept in Classification

The main idea behind the automatic generation of
membership functions and fuzzy rules in decision-
making and two-class identification problem is the
concept of clustering. Using the eniropy principle,
parameter values in the sample data can be clustered.
We first discuss the entropy concept by considering a
classification of two-class (“true” and “false”) samples.
When we look at the samples in the “true” class, for
example, we try to discover what it is that makes
them “true”. In other words, we try to find
similarities among the parameters for “true” cases,
which distinguish them from samples which are
“false”. This means that we try to find attributes or
groups of attributes possessed by “true” samples and
not by “false” samples. These attributes or groups of
attributes then become part of the boundary

»

separating the “true” samples from the “false”
samples. To optimally separate “true” and “false”
samples, we usually use a measure of information.
The quantity of information, gain or loss, is a basic
element for entropy calculation for clustering.

The main purpose of entropy minimization analysis
in information theory is to determine the gain or loss
of information in a given data set. This information
quantity compares the contents of available data to
some prior state of expectation. The higher one’s
prior estimate of the probability for an outcome, the
lower the information gained by observing its occur-
rence. In general, the more probable the event is on
the basis of what we already know, the lesser the
information content is if and when the event occurs.
In other words, when information gain is minimized,
we reach at an optimal point for predicting the occur-
rence. A quantity of information is defined as pro-
portional to the negative of the logarithm of prob-
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ability [9].

If we assume that the probability that the 7™
sample W, is true is P(W)), and if we actually observe
the sample W; in the future and discover that it is

true, then we gain the information,
IW)=—kIn P(W)

If we discover that it is false, on the other hand, we

still gain the information,
IW)=—kn[l-PW)]

Entropy is defined as the expected value of infor-
mation. Thus, the expected value of the information
to be gained by observing W; can be expressed as
follows (with P,= P(W;):):

SW;, ~W)=—Fk[P,In Pi+(1—P) in (1—P)]

To illustrate this concept we first discuss the
entropy equation for sample clustering. Assume that
we are seeking a threshold value for samples in the
range of [ Xgin, Xmax ] fOr @ two<class problem (See Figure
1). By moving an imaginary threshold value x
between X, and Xy, we can calculate the entropy
for each value of x for p region [¥my, ¥ma) and g

region | Xin, ¥max}, which is[10]:

Sx)=p(x)S,(x) +4q(x) S, (x) D

QO Class 1 Sampies

@ class 2 samples

%08008 $3 o000 u-!

xmin X xmax

p region q region

Fig. 1 Illustration of Threshold Value Calculation

where,
p(x) is the probability that all samples are in the p
region;
q(x) is the probability that all samples are in the ¢

region ; and
p@) +gql)=1.

Entropies of the p and g regions, S,(x) and S,(x),

can be expressed by:

Sy ()= — (P D n P, (x) + 1, () In p, (%)), )]
S, ()= —(q,(*)Ing, (x) +q,(x)Ing,(x)) 3
where,

B (%) is the probability that the class %2 sample is in
the p region, and
q. (%) is the corresponding conditional probability for

the ¢ region.

We calculate the entropies of equations (2) and
(3) using relatively unbiased estimates of p (%), gy (%),
P (x), g (x). The relatively unbiased estimates for
P () and p(x) are:

ny (x ) +1
PO=2 ey 1 @
+1
Peo=" ©
where,

#, (x) = the number of class 2 samples located in the p
region,

n(x)=the total number of samples located in the ¢
region, and

n=the total number of samples in the p and ¢
regions.

Equations for ¢,(x) and ¢g(x) can be derived simi-
larly. Using the estimates and the entropy equation,
we calculate the entropy for each value of x. In
reality, entropy S is a measure of the “fuzziness” of

the outcome probability P;. Also, from the reference
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[9], it was shown that low level entropy points in the
direction of a more nearly perfect sorting of events
based on outcomes. In other words, the entropy mini-
mum point divides two events so that the classifi-
cation probability can be higher. This also means that
the entropy point is really “fuzzy” in sorting of the
two events. A value of x whose entropy is the mini-
mum, X =S Fmin» ¥mas), 1S the optimal threshold
value in the range of [%.., *max ), and this point also
indicates the fuzziest point in two different classes.
Optimal division of the sample space will yield
fuzzy terms for each parameter;the partitioning points
(the entropy minimum points) and the in-between
point decides the range of the membership functions.
Using the same clustering method but with binary
parameter values, fuzzy production rules will be drawn.
Because the rule extraction process is performed over
each individual fuzzy terms, the final production rule
will consist of the integration of independent rules.
The entropy of a set of possible outcomes of a trial in
which one and only one outcome is true is expressed
as the summation of the products of all probabilities
and their logarithms. Therefore the entropy of all the

samples is expressed by

S=—k ﬁ. [P In P;i+(1 =P)In(1—P)] (6)
This entropy is smallest when the amount of infor-
mation that we can expect to gain from further obser-
vation is least. Therefore, given all available infor-
mation, it is possible to cluster using the minimum
entropy principle. In entropy minimum state, all of
the information has been extracted from the available
sample data. This observation is very important to
the algerithmic approach:when samples are the only
source of information, maximum extraction of infor-
mation is essential for an automated process. There-
fore, in classification problems, the entropy principle
is a useful tool for optimal clustering.

The clustering point in samples is called a threshold

value between classes. The clustering point, the

threshold value point, is actually the fuzziest point
between two clusters. The threshold point indicates
the overlapping region of two sets or two clusters,
and the center point between two threshold point
may indicate the most representative value for each
cluster or set. Therefore, the regions may be divided
by the threshold points and the in-between points and
it will yield the fuzzy term region. Membership
functions are shaped from the threshold and the
in-between points. If we sub-divide once-clustered
samples using the same entropy principle, we can
sub-cluster the samples. Further fuzzy terms will be

resulted in the sub-clustered region.

IV. Membership Function Generation

Using the entropy equations (2) and (3) with the
estimates given by (4) and (5), we calculate the
entropy for all the x ’s in the sample value space. A
value of x which yields the minimum entropy is taken
to be the threshold value of the two fictitious
partitions. We indicate this first threshold by X;. This
threshold value is calculated in the range of X, the
minimum sample value, and %, the maximum
sample value. If we replace the variables Xp;, and %,y
by X; and Xo,, respectively, then we can indicate X,
by X1 = Smin(Xo1, Xp2), Where Spin(a, b) indicates the
minimum entropy point in the [a, 8] region. The left
side of the primary threshold may be called the nega-
tive side and the right side, the positive side. The
threshold point, X, is the fuzziest point in that this
point represents the center of the two clusters;the
threshold point partially overlaps the two classes.
Therefore, we simply find the middle points, one in
between X;, and Xy, and the other in between Xy,
and Xg,, and assign 1.0 degree to the two middle
points. And proportional degree can be obtained by
drawing two diagonal lines, one from (X, +Xy)/2, 1.0)
to (X, +Xo)/2, 0.0) and the other from ((X), +Xq)/
2, 1.0) to ((X;, +Xo2)/2, 0.0). Hence, there appear two
fuzzy terms of NG(negative) and PO(positive) with
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trapezoid-shaped membership functions (see Figure 2

(@)):

[X()l, (Xu +X02)/2]NG
[(X” +Xo])/2, X()z]:PO

We can draw another threshold point to sub-divide
each side more precisely. Using the same procedure
for entropy calculation, we can compute secondary
threshold values from the positive and negative sides,
X1 = Swin(Xot, X11) and Xy = Spin (X1, Xog), respect-
ively. X, is the fuzziest point in the region of NG
(negative), and X», the fuzziest point in PO(positive).
Assuming that we have trapezoid-shaped functions of

the fuzzy terms for both ends and triangular-shaped

} | 00
o+ 4y ) Xi+Xp
Xo1 ) Xu 2 Xo2
(a)
NG NZ Pz PO

= — t 0.0
K1+ X3 X31+ Xp1 X1+ X3z X3z + Xog
2 2 2 2
X X Xa X X
(b)

Fig. 2 Nlustration of Membership Function Determination
by Entropy Minimum Points

ones for the others, we have the following four fuzzy
terms of NG(Negative), NZ(Negative Zero), PZ(Posi-
tive Zero), and PO(Positive). These four terms are
illustrated in Figure 2(b).

[ X0, (X +X11)/2]:NG
(X +Xo1)/2, (X +X2)/2}:NZ
(X +X20)/2, (X5 +X02)/2]:PZ
[(Xy +X2)/2, X ]: PO

If we proceed one more level of threshold calculation
in the clustered region, we obtain the following ter-
tiary threshold values. Each tertiary threshold value
and its range for minimum entropy search is shown
below. The threshold finding for each level is
illustrated in Figure 3.

(Xmin) (Xmax)
Xoi Xo2 n=0

\\ Xu / n=1
] "\X e ”\x” }
” \vr/\ ,/J\'/_\/\

[N
Xn X Xas Xaz Xaz n=4

Xar

Fig. 3 The levels of Threshold Value Calculation

X351 = Seoin (Xo1, X21)
X32= Smin (Xa1, X11)
X33 =Smin (Xi1, X22)
X34= Serin (X2, Xo2)

The areas of the 8 fuzzy terms are indicated below:

[ Xor, (X3 +X2)/2]:NB

[(X5) + X0)/2, (Xoy +X3)/2]:NM
[(X3 +X50)/2, (X3, +X1)/2]:NS
[ +X5/2, (X33 +X,1)/21:NZ
[(X3 +X11)/2, (X33 +X3)/2]:PZ
[(X3 +X1)/2, (X34 +X25)/2]1:PS
(X33 +X2)/2, (X34 +X0)/2]: PM
[(X22 +X30)/2, Xo21:PB
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Again, assuming trapezoidal shapes in both ends and
triangular shapes for the others, we have total 8
membership functions determined by mechanically
connecting the center points between two adjacent
threshold value points as shown in Figure 2(c).

Also, we may draw the following relationship
between the threshold level and the number of fuzzy

terms (and membership functions):
L=2" 4]

where

L is the number of fuzzy terms, and

» is the threshold level (1 for primary, 2 for secondary,
3 for tertiary, and so on).

These membership functions are not realistic and
must be interpreted in care. In other words, the mem-
bership functions do not give a true picture of the
real situation. PZ or NZ, for instance, does not corre-
spond to the true O value of the input;reality and
expert opinion are totally ignored for the determi-
nation of the membership functions. This irrelevance,
however, does not lead to any problem for rule gener-
ation or inference. In reality, membership functions
are meaningful only when they accurately represent

the sample data from which the rules are derived.
V. Fuzzy Rule Geneation

A. Rule Extraction Principle

Fuzzy rule is to relate input and output variables.
Since the entropy minimization principle has been
proven effective for decision rule derivation with
binary values [9], we will discuss the rule derivation
with binary value first, then, the transform of the
sample value into binary number for each fuzzy term.
The rules for two-class problems will be generated
from the acquired 8 fuzzy terms using the entropy
principle.

Along with the entropy calculation, there is the
problem of assigning a probability in cases where

only one digit (or variable) has been observed “true”
on z of 7 occasions. What makes it difficult to assign
a probability is the feeling that what is observed is
more likely than what is not, and that what is
observed more often is more likely than what is
observed less often. This probability can be expressed
as
P=lim =

a0 N
As 7 becomes larger and larger, z2/n comes closer and
closer to P. But it is not clear in what sense z/# is
approaching a limit, which we presume to exist, and
call P. In such cases it is possible to use the mean
probability, Pto represent P. Mean probability in the
class separation is defined by[9].

z+t

P ¥s

®
where,

¢ is the number of distinguishable “true” states, and
f is the number of distinguishable “false” states.

This mean probability, when there are only two

classes (¢=1 and f =1), becomes,

z2+1

p= n+2

©

The mean probability is used in the entropy equation
for rule derivation and in rule weight calculation.
Fuzzy rule generation will choose an optimal rule
from numerous candidates. This method involves
finding a partition (or cluster separation) of feature
space for which entropy S, the expected value of the
conditional classification entropy, is a minimum. The
entropy of a rule for a fuzzy term, using the mean

probapbility of equations (8) or (9), is

S=—kY.Y; P;In P; (10)
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m is the total number of steps, i.e., the total number
of separated clusters,
Y; is the number of samples covered by step 7, and

k is a constant.

Theoretically, therefore, we check all the combinations
of separating two classes and calculate their entropy
to select one combination (a rule) whose entropy is
smallest. For »n parameters in binary number, for
instance, there are N =2" combinations. Furthermore,
there are N? ways of separating N numbers into two
classes;if we have, for example, 15 parameters in
binary numbers, there are 21'>=32768 different ways.
Even allowing that we usually do not have that many
samples, we still have too many combinations to
investigate. Therefore, a practical way to apply the
entropy principle for production rule derivation is

obviously needed.

B. Simplified Method for Rule Extraction

To simplify the extraction of rules, we investigated
the relationships of the variables in the entropy
equations. From equation (10), we can see that the
closer P is to | or 0, the smaller the entropy § is.
Also, from equations (8) and (9), it is apparent that
the bigger z is, the bigger P is. Therefore, if we can
find the biggest 2z, we can find the rule with minimum
entropy:to find the biggest z, we use the concept of
digit index. The digit index is defined as the ratio of
correct separation of two classes using only a single
digit of parameter (or feature). In other words, the
index is a measure to select a digit which assures the
minimum number of wrong classifications.

For digit index determination, we first calculate a
quantity called the digit count. We count the number
of 1's in the class 1 samples and the number of 0’s in
the class 2 samples. Then, we divide each number by
the total number of samples in each class. The result
is digit count, d. If we have n digits (or features),
then, by this calculation, we can have n digit counts;
d, through d,. Next, we add all the digit counts of

10

each class. If this value is close to 1, the digit (or fea-
ture) is not important for separation:the 1’s and 0’s
have the same weight in both classes. If the value is
not close to 1, this means that there are less 1’s or 0’s
in a class. We formalize this idea by defining digit
(or feature) index as follows:
L=|Td,~1] a1
The digit (or feature) whose digit index is the maxi-
mum is the best separatling point in rule extraction.
We separate samples accordingly and eliminate those
samples which were separated by the digit. If we
chose the rule as “Ixx for class 17 (x indicates “don’t
care”™), then we delete all the samples (of both classes)

whose first digit value is 1. We repeat this sequence of

i

i analog sample i

membership .

| grade for fuzzy term

1T
o |
- ﬁfw_.‘_ﬁ\_‘

( # of sample
sub-sample 1

=Q?

digit index
calculation

@aximum index > —No-—

| which meet the step
i N -
. \f(iund ?

: of rule
|

—— I
| eliminate samples 1)
]
!
U |

yes

i a step of rule
¢ formation

{

production rule
store

stop

Fig. 4 Flow Chart for Fuzzy Rule Derivation
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digit index calculation, formation of the rule, and
elimination of the samples which satisfy the rule, until
all the samples are accounted. Figure 4 shows the
flow chart of this simplified rule generation procedure.

C. lllustration of the Ruile Extraction

Fuzzy rule generation is performed separately for
each fuzzy term. Therefore, we check the samples if
they are the member of a particular fuzzy term, for
example PB. If they are the member, then they are
transformed into binary number 1s;otherwise, Os for
fuzzy term PB. This check and transformation pro-
cess will be done for other fuzzy terms independently.
Each fuzzy term rule resemble a decision tree in
which the branch points indicate the divided search
route. Each r fuzzy term rule has the form of “If...,
else if...,else if...,end if”. Therefore, the fuzzy rule
generated by this method is somewhat different from
the conventional one which includes as many fuzzy
terms as chosen (8 in our case) in a single rule.

As an illustration for fuzzy rule extraction, we use
data adopted form [10] for an imaginary fault identi-
fication situation. We have fifteen 3-variable samples
to be classified into two classes. The sample data is
shown below:

sample # vl v2 v3 class
1 0.210 1.477 2.420 1
2 0.180 1.435 5.012 I
3 0.203 1.184 5.245 1
4 0.106 1.154 6.012 1
5 0.202 1.057 7.034 1
6 0.185 0.673 4.992 1
7 -0.170  4.628 3.420 2
8 0.724 1.114 5.940 2
9 0.035 3.944 5.120 2
10 0.167 4.262 3.420 2
11 0.169 4.000 6.011 2
12 0.045 1.251 5.093 2
13 0.017 3.904 9.024 2
14 -0.001 4.703 4.062 2
15 -0.118 4.640 5.872 2

We will derive rule for fuzzy term PS, and the

region of the fuzzy term PS is assumed to be [0.165,
0.212] for the first variable (v1), [3.877, 4.774] for the

11

second (v2), and [4.890, 6.036] for the third (v3), as
shown in Figure 5.

Pz PS PM

V1

S
0.165 0.180 0212

Pz PS PM

AN

- 38m 4.05 4.774

PZ PS PM

/ A\

Vi

4.890 505 6.036

Fig. 5 Fuzzy term PS of the variables V1, V2, and V3

For binary conversion, the samples in each variable
are translated into 1’s or 0’s depending on their mem-
bership status in the term PS. If the sample value is in
the fuzzy term PS range, it is translated to 1, other-
wise, 0. Then, the binary table for the fuzzy term PS
will be resulted as indicated below:

sample # D1 D2 D3 class
1 1 0 0 1
2 1 0 1 1
3 ] 0 1 1
4 0 0 1 1
5 1 0 0 1
6 1 0 1 1
7 0 1 O 2
8 0 0 1 2
9 0 1 1 2
10 1 1 0 2
11 1 1 1 2
12 0 0 1 2
13 0 1 0 2
14 0 1 0 2
15 0 1 1 2
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Now, we follow the steps to produce rules for the
fuzzy term PS using the simplified rule extraction
method.

Step 1
First, we find the digit index. For the samples of

each digit (D1, D2, and D3), we count the number of
1’s in the class 1 samples and the number of 0’s in the
class 2 samples. Then we divide the number of 1’s by
the number of samples in class 1, and the number of
0’s by the number of samples in class 2 to calculate
digit count; from the digit count, we get digit index.

This first step of the process is tabulated below:

Dl D2 D1
Class | Class2 | Class1 ) Class2 | Class | | Class 2
Numberol [ and Os 5 7 0 2 4 4
Digit Count 5/6 /9 0/6 28 4/6 49
Digit tndex N6l 0.78 0.11

From the above table, the second digit has the
biggest digit index, so we start the separation process
with the second digit. Therefore we have “xl1x for
class 2" as the first step of the rule. Then z, =7 (from
class 2) and n, =7 (from both classes), and the mean
probability is P, =(z, +1)/(s, +2)=8/9=0.89. This
value is taken to be the weight of the first step of the
PS rule. Eliminating the samples having 1 in their sec-

ond variable, we have:

sample # D1 D2 D3 class

1 1 0 0 1
2 1 0 1 1
3 1 0 1 1
4 0 0 1 1
5 1 0 0 1
6 1 0 1 1
8 0 0 1 2
12 0 0 i 2
Step 2

The process of the drawing digit index is illustrated
in the table below:

12

D D2 D3
Class 1 Class2 [ Class1 | Class2 {Class 1 | Class 2
Numberof 1and 0's 5 2 0 2 4 0
Digit Count 5/6 22 /6 22 4/6 02
Digit Index 0.83 0.00 0.33

We see that the digit index is biggest for the first
digit (D1), so “1xx for class 1”7 becomes the second
step of the rule for fuzzy term PS. Then z,=35 and #,
=5 and, therefore, the weight of the step 2 of the rule

is Py= 6/7=0.86. The remaining samples are:

sample # Dl D2 D3 class
4 0 0 1 1
8 0 0 I 2
12 0 0 1 2
Step 3
The process of the drawing digit index is shown
below :
Di D2 [X]
Class 1 Class2 }Class] | Class2 [Class1 | Class2 |
Number of 1 or 0's 1] 2 0 2 1 0
Digit Count 0/1 22 0N 212 1/1 072
Digit Index 0.00 0.00 0.00

As we see that all the digit indices are same, we can
choose “xx1 for class 2" for the third step of the PS
rule. Then, 2;=2 and »#;=3 and, therefore, the rule
weight for step 3 of the rule is Py= 3/5=0.6.

After the third step, rule derivation stops because
all the samples are eliminated. Therefore, the fuzzy
rule for term PS consists of 3 steps. The fuzzy rule for

term PS can be tabulated as follows:

PS Rule
Steps [ V, Term Class | Weight | Rule in Words
H 2 PS 2 .89 {F V; is PS. THEN class_2
2 1 PS ] 0186 ELSE IF V, is PS, THEN class_1
3 k] PS 2 .60 ELSE IF V, is PS. THEN class_2
ENDIF

The above procedure must be performed for other
fuzzy terms;the final fuzzy rule will be a set of 8

independent production rules.
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VI. Inference and Defuzzification

In the previous sections, we have discussed about
the algorithmic procedure for membership function
and production rule generation. However, this algori-
thmic approach is not complete unless suitable infer-
ence and defuzzification method for classification and

decision-making problem are provided.

A. Inference

Inference is a mechanism by means of which a con-
clusion is drawn from sample data and rules. It is
designed to evaluate the rules whose conditional parts
satisfied. A popular inference method is “max”, in
which the final membership grade for an output is the
union of the fuzzy iembership grades which are the
outputs of the individual rule. The values of the mem-
bership grades are determined by the degrees of mem-
bership in the conditional part of the rules [7]. If OR
is used to form the conditional part (“max-max”), the
grade valuz is determined by the maximum of the
membership grades, and if AND is used (“max-min”),
it is determined by the minimum of the grades. How-
ever, this inference method does not provide a proper
scheme to handle rules accompanied by weights;to
accommodate production rules with rule weights,
therefore, a new inference method is required.

Two methods of inference are devised in this
research. The first method is to check for a matched
(non-zero) premise starting from the first fuzzy term
(PB) to the last (NB). If a step (each step has the
fuzzy term P]‘B in the conditional part) of the rule is
matched, then a triplet of the firing strength, the cor-
responding weight, and the class identification for the
fuzzy term PB, {upg, Wpes, Cpg} Wwill be resulted.
Then, we move to the next fuzzy term, PM. This pro-
cess goes on to the last fuzzy term. Therefore, finished
with this method, we have 8 triplets represented by
{(u, W;, C)), 7=PB, PM, PS, PZ, NZ, NZ, NM, NB}.
We call this process the “overall match™ method.

The other inference method is called the “step
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match” method because we check each “step” of the 8
fuzzy rules, one at a time. Unlike the “overall match”
method, this does not check all the steps of a fuzzy
term rule. Instead, this method checks the first step of
the first term rule, and the first step of the second
fuzzy term rule, and then the first step of the third
fuzzy term rule, and so on. Depending upon the
result of the match and fire at each step, the step
check will either continue or stop. This means that if,
for example, the first steps of any one or more fuzzy
rules are matched and those of the other fuzzy rules
are not, process stops;then, two triplets of the firing
strength, the corresponding weight, and the class
identification, { ups, Wes, Cpa} and {upy, Wem, Crm ts
respectively, will be resulted. If we do not have any
matched set in the first step of the fuzzy term rules,
we move to the second step. This process will go on

until there is a matched set or all steps are finished.

B. Defuzzification

Usually, more than one fuzzy rule may be matched
and fired at the same time, so there should be a con-
flict resolution measure. This output decoding method
is called defuzzification. Defuzzification is the process
of converting the result of the inference into a
non-fuzzy value which best represents the membership
functions of an inferred fuzzy classification actor. One
of the most famous methods of defuzzification is

center of area method which can be represented by

f: x; pe ()

H

Xg=

X

e (%)

1

it

where,

m=number of quantized level of variable,

x; = value of a variable at the quantized level 7,

i (x;) = membership degree of the matched fuzzy term
k at the value x;, and

x4 = defuzzified value
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The other popular method is the “mean of the maxi-

mum” method which can be represented by

Ly
=T

where, [ is the number of quantized x values which
reach their maximum membership degrees.

For classification and decision-making problems,
and for fuzzy rules with rule weights, however, the
conventional defuzzification method is not appropriate.
Due to the nature of the problem, the output of the
classification process should nol be an analog value
but a binary value, i.e., the output is not a quantity
but a discrete status. This unique characteristic of
classification problem and the introduction of rule
weight require the development of new defuzzification
method. A new method, “pivot balance defuzzification”,
is explained below.

The lever and pivot concept finds solutions in the
unique environment of the classification problem:
binary output and multiple sets of fired length,
weight, and class identification. The basic idea of this
method is to place the “weights” in the location
designated by the firing “length”, and then, to move
the pivot to the position which balances the lever (see
Figure 6). A firing strength determines the distance
from the center of the lever, and the weight of the
fired rule acts as a measuring weight. We place the
weights on the left side of the lever if the class identi-
fication Cy =2, and, on the right side if C,=1. If we

scale the lever so that it is centered on 0, class 1

H H,
My H,
-llo 05II l |0 l]o,s 11/1/4 1]0
W, w.
W,
PP

Fig. 6 Illustration of the Pivot and Balance Defuzzification
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includes all points on the right (positive) side of the
pivot point pp, and class 2 includes all points on the
left (negative) side. Therefore, the sign of the final
defuzzified output, the pivot point pp, decides the
class of the sample:class 1 if pp is positive and class
2, if negative.

The pivot point pp for defuzzification, therefore,

can be expressed by the following equation.

Z Hn Wn_z Hm Wm
c, C,

W

C,&C,

pp= (1

where,

u is the firing strength of the matched rule of the
term &, k=PB, PM,...,NB, and

W, is the weight of the matched fuzzy rule of the term
k, k=PB, PM,..,NB.

VI. Conclusions

An algorithmic method to automates the procedure
for fuzzy logic application to decision-making and
classification problems is presented. This approach is
based on an entropy minimization principle to generate,
using only sample data, membership functions and
fuzzy rules. Membership function generation using
the clustering principle is discussed and the rule deri-
vation, along with the rule weight determination, is

illustrated.
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