• 제목/요약/키워드: classification of reservoir

검색결과 63건 처리시간 0.022초

다변량분석법을 활용한 농업용 저수지 수질유형분류 (Classification of Agricultural Reservoirs Using Multivariate Analysis)

  • 최은희;김형중;박영석
    • 한국관개배수논문집
    • /
    • 제17권2호
    • /
    • pp.17-27
    • /
    • 2010
  • In order to manage the water quality in reservoir, it is necessary to understand the temporal and spatial variation of reservoirs and to classify the reservoirs. In this research, agricultural reservoirs are classified according to physical characteristics (depth, residence time, shape of the reservoir etc) and water quality using multivatriate analysis (PCA and CA). CA (Cluster Analysis) method classify reservoirs into several groups as a similarity of the reservoirs, but it is difficult to indicate a full list to the one table. In case of PCA (Principle Component Analysis) method, it has the advantage for the classification on the reservoirs depending on the water quality similarity and also it is useful to analyze the relationship between related factors through correlation analysis. However PCA is limited to classify into several groups based on the characteristics of the reservoirs and each user should be classified as randomly subjective according to the relative position of the reservoir in the figure. In conclusions, compared to conventional reservoirs classification methods, both CA and PCA methods are considered to be a classification method that describes the nature of the reservoir well, but classification results has a restriction on use, so further research will be needed to complement.

  • PDF

GLCM 기반 UAV 영상의 감독분류를 이용한 저수구역 내 농경지 탐지 (Detection of Cropland in Reservoir Area by Using Supervised Classification of UAV Imagery Based on GLCM)

  • 김규문;최재완
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.433-442
    • /
    • 2018
  • 저수구역은 계획된 홍수위에 의하여 둘러싸인 지역 혹은 댐의 계획된 홍수위 내에 있는 지역으로 정의된다. 본 연구에서는 저수구역 내 농경지를 탐지하기 위하여, 대표적인 기계학습 기법인 RF (Random Forest) 기반의 감독 분류 방법을 적용하였다. 저수구역 내의 농경지를 효과적으로 분류하기 위하여, 질감정보를 정량화하기 위한 대표적인 기법인 GLCM (Gray Level Co-occurrence Matrix)과 NDWI (Normalized Difference Water Index), NDVI (Normalized Difference Vegetation Index)를 추가적인 입력자료로 활용하였다. 특히, 질감정보를 생성하는데 사용된 윈도우 크기가 농경지의 분류 정확도에 미치는 영향을 분석하여, 저수구역 내의 농경지를 효과적으로 분류하기 위한 방법론을 제시하였다. 실험결과, UAV 영상을 이용한 분류결과를 통하여 취득된 다중분광영상과 NDVI, NDWI, GLCM 영상들을 이용하여 저수구역 내의 농경지를 효과적으로 탐지할 수 있음을 확인하였다. 또한, GLCM의 윈도우 크기가 분류정확도를 향상시키기 위한 중요한 변수임을 확인하였다.

Linear Spectral Mixture Analysis of Landsat Imagery for Wetland land-Cover Classification in Paldang Reservoir and Vicinity

  • Kim, Sang-Wook;Park, Chong-Hwa
    • 대한원격탐사학회지
    • /
    • 제20권3호
    • /
    • pp.197-205
    • /
    • 2004
  • Wetlands are lands with a mixture of water, herbaceous or woody vegetation and wet soil. And linear spectral mixture analysis (LSMA) is one of the most often used methods in handling the spectral mixture problem. This study aims to test LSMA is an enhanced routine for classification of wetland land-covers in Paldang reservoir and vicinity (paldang Reservoir) using Landsat TM and ETM+ imagery. In the LSMA process, reference endmembers were driven from scatter-plots of Landsat bands 3, 4 and 5, and a series of endmember models were developed based on green vegetation (GV), soil and water endmembers which are the main indicators of wetlands. To consider phenological characteristics of Paldang Reservoir, a soil endmember was subdivided into bright and dark soil endmembers in spring and a green vegetation (GV) endmember was subdivided into GV tree and GV herbaceous endmembers in fall. We found that LSMA fractions improved the classification accuracy of the wetland land-cover. Four endmember models provided better GV and soil discrimination and the root mean squared (RMS) errors were 0.011 and 0.0039, in spring and fall respectively. Phenologically, a fall image is more appropriate to classify wetland land-cover than spring's. The classification result using 4 endmember fractions of a fall image reached 85.2 and 74.2 percent of the producer's and user's accuracy respectively. This study shows that this routine will be an useful tool for identifying and monitoring the status of wetlands in Paldang Reservoir.

저수조 자동 분류를 이용한 효과적인 수질 오염 관리 (Effective Water Pollution Management using Reservoir Tank Automatic Classification)

  • 정경용;전인자
    • 한국콘텐츠학회논문지
    • /
    • 제9권8호
    • /
    • pp.1-8
    • /
    • 2009
  • IT 융합 기술의 발전에 따라 정부의 4대강 복원을 위한 마스터플랜이 구축되면서, 환경 친화적인 수질 오염 관리의 중요성이 부각되고 있다. 본 논문에서는 친환경 저수조의 수질 향상과 온라인 관리를 하기 위해서 저수조 자동 분류를 이용한 효과적인 수질 오염 관리를 제안하였다. 제안된 방법에서는 수질오염 평가의 7가지 요소들을 정의하였고 센서를 이용하여 수소이온농도(pH), 화학적 산소요구량(COD),부유 물질량(SS), 용존 산소량(DO), 대장균군수(MPN), 총인 (T-P), 총질소(T-N)에 따른 적합한 수질 오염 관리를 하였다. 저수조의 7가지의 수질 오염 요소간의 측정치를 평가하고 [1,9] 사이에 분포하도록 정규화하였다. 저수조 자동 분류를 이용한 수질 오염 관리 시스템의 성능 평가를 하기 위해 F-측정식을 이용하여 유용성을 검증하였다. 평가 결과, 기존 시스템에 대한 만족도의 차이가 통계적으로 의미가 있음을 증명하였다.

패턴분류 방법 적용에 의한 장성호 수문·수질자료의 특성파악 (Characteristics Detection of Hydrological and Water Quality Data in Jangseong Reservoir by Application of Pattern Classification Method)

  • 박성천;진영훈;노경범;김종오;유호규
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.794-803
    • /
    • 2011
  • Self Organizing Map (SOM) was applied for pattern classification of hydrological and water quality data measured at Jangseong Reservoir on a monthly basis. The primary objective of the present study is to understand better data characteristics and relationship between the data. For the purpose, two SOMs were configured by a methodologically systematic approach with appropriate methods for data transformation, determination of map size and side lengths of the map. The SOMs constructed at the respective measurement stations for water quality data (JSD1 and JSD2) commonly classified the respective datasets into five clusters by Davies-Bouldin Index (DBI). The trained SOMs were fine-tuned by Ward's method of a hierarchical cluster analysis. On the one hand, the patterns with high values of standardized reference vectors for hydrological variables revealed the high possibility of eutrophication by TN or TP in the reservoir, in general. On the other hand, the clusters with low values of standardized reference vectors for hydrological variables showed the patterns with high COD concentration. In particular, Clsuter1 at JSD1 and Cluster5 at JSD2 represented the worst condition of water quality with high reference vectors for rainfall and storage in the reservoir. Consequently, SOM is applicable to identify the patterns of potential eutrophication in reservoirs according to the better understanding of data characteristics and their relationship.

기상예보자료 기반의 농업용저수지 저수율 전망을 위한 나이브 베이즈 분류 및 다중선형 회귀모형 개발 (Development of Naïve-Bayes classification and multiple linear regression model to predict agricultural reservoir storage rate based on weather forecast data)

  • 김진욱;정충길;이지완;김성준
    • 한국수자원학회논문집
    • /
    • 제51권10호
    • /
    • pp.839-852
    • /
    • 2018
  • 본 연구의 목적은 기상자료(강수량, 최고기온, 최저기온, 평균기온, 평균풍속) 기반의 다중선형 회귀모형을 개발하여 농업용저수지 저수율을 예측하는 것이다. 나이브 베이즈 분류를 활용하여 전국 1,559개의 저수지를 지리형태학적 제원(유효저수량, 수혜면적, 유역면적, 위도, 경도 및 한발빈도)을 기준으로 30개 군집으로 분류하였다. 각 군집별로, 기상청 기상자료와 한국농어촌공사 저수지 저수율의 13년(2002~2014) 자료를 활용하여 월별 회귀모형을 유도하였다. 저수율의 회귀모형은 결정계수($R^2$)가 0.76, Nash-Sutcliffe efficiency (NSE)가 0.73, 평균제곱근오차가 8.33%로 나타났다. 회귀모형은 2년(2015~2016) 기간의 기상청 3개월 기상전망자료인 GloSea5 (GS5)를 사용하여 평가되었다. 현재저수율과 평년저수율에 의해 산정되는 저수지 가뭄지수(Reservoir Drought Index, RDI)에 의한 ROC (Receiver Operating Characteristics) 분석의 적중률은 관측값을 이용한 회귀식에서 0.80과 GS5를 이용한 회귀식에서 0.73으로 나타났다. 본 연구의 결과를 이용해 미래 저수율을 전망하여 안정적인 미래 농업용수 공급에 대한 의사결정 자료로 사용할 수 있을 것이다.

경험적 면적감소법을 위한 저수지 분류에 관한 연구 (Multiple Regression Analysis to Determine the Reservoir Classification in the Empirical Area-Reduction Method)

  • 권오훈
    • 물과 미래
    • /
    • 제10권1호
    • /
    • pp.95-100
    • /
    • 1977
  • The empirical area-reduction method by W.M. Borland and C.R. Miller and its revised procedure by W.T. Moody were made of fitting the area and storage curves to the Van't Hul distributions. It should be noted that the reservoir is classified into one of the four standard types on the basis of the topographical feature of the reservoir in application of the method. In other words, this method did not take into account several considerafble factors affecting the mode of sediment deposition, but only the shape of the reservoir as a governign factor. This is why the method occasionally creates ambiguity in classification and accordingly leads to unexpected mode of deposition. This paper describes a generating an formula to decide the standard classification of four types Van's Hul distributions, taking into consideration quantitatively sediment-loss percent and capacity-inflow ratio as well as the shape of the reservoirs by multiple regression analysis using the least square method to get a better fit to the design curves. The result is expressed as $Y=-1.95+55.8X_1+0.14X_2+0.12X_3$ in which the the values of Y locate the standard type I through type IV in the range from ten to forty with the interval of ten. The regression analysis was correlated well with the standard errors of estimate of around two except for the case of the type IV. This formula does not give big difference from the Borland's work in general sityation, but it demonstrates acceptable results, giving somewhat precise replys for the specific reservoirs. Its application to the Soyang Lake, one of the largest reservoirs in the country, defined clearly the type II, while the original method located it in the boundary of the type II and type III.

  • PDF

홍수대응 다목적 재해대응 저류공원의 도입과 분류체계 연구 (Introduction and Classification System of Reservoir Park Mitigating Flood)

  • 문수영;정승현;윤희재
    • 한국콘텐츠학회논문지
    • /
    • 제18권12호
    • /
    • pp.646-659
    • /
    • 2018
  • 본 연구의 목적은 도시공원과 같은 도시 내 녹색공간에 재해예방기능을 추가한 '저류공원'의 개념을 정립하고 그 분류체계를 제안하는 것이다. 저류공원은 도시공원과 저류시설을 도시계획시설로 중복 결정하는 것으로 도시민의 일상적인 이용을 위한 공간제공과 유사시 재해저감 기능을 수행하는 두 가지 역할을 동시에 수행할 수 있는 장점이 있다. 기후변화에 따른 도심 내 침수 등을 예방하기 위해서는 저류시설이 도시계획시설과 함께 제도적으로 검토가 되어야 시설이 공원 등의 형태로도 설치가 가능한데, 저류기능과 도시 주변 환경에 초점을 맞추어 법리적 검토를 하다보니 저류공원이 주제공원으로서 입지가 명확하지 않음을 알 수 있었다. 따라서 본 연구에서는 국내외 사례조사 및 현장 답사를 통해 도시 내 저류시설 유형을 도시 녹색공간의 입지적 특성을 반영하여 총 5종류의 저류공원으로 재분류하여 제시하였다. 저류공원에 대한 분류는 지하수위, 사람의 이용, 저류랑의 규모를 기준으로 생태형, 식생피복형, 운동시설형, 지하매설형, 복합형 등 총 5가지로 구분하였다. 이 분류체계는 향후 저류시설 입지를 지정 후 조성되는 시설의 유형을 결정하는데 활용할 수 있다.

Estimation of water quality distribution in freshing reservoir by satellite images

  • Torii, Kiyoshi;You, Jenn-Ming;Chiba, Satoshi;Cheng, Ke-Sheng
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1227-1229
    • /
    • 2003
  • Kojima Lake in Okayama prefecture is a freshing reservoir constructed adjacent to the oldest reclaimed land in Japan. This lake has a serious water quality problem because two urban rivers are flowing into it. In the present study, unsupervised classification was performed at intervals of several years using Landsat MSS data in the past 15 years. After geometric correction of these data, MSS data corresponding geographically to the field observation data were extracted and subjected to the multivariate analysis. Water quality distribution in the lake was estimated using the regression equation obtained as a result. In addition, two - dimensional and three-dimensional numerical simulations were performed and compared with the distribution obtained from the satellite images. Behavior of the reservoir flows is complicated and water quality distribution varies greatly with the flows. Here, I report the results of analysis on three factors, field observation, numerical simulation and satellite images.

  • PDF

단일저수지 농업가뭄평가모형의 개발 (Development of A Single Reservoir Agricultural Drought Evaluation Model for Paddy)

  • 정하우;최진용;박기욱;배승종;장민원
    • 한국농공학회논문집
    • /
    • 제46권3호
    • /
    • pp.17-30
    • /
    • 2004
  • This study aimed to develop an agricultural drought assessment methodology for irrigated paddy field districts from a single reservoir. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The suggested model, SRADEMP (a Single Reservoir Agricultural Drought Evaluation Model for Paddy), was composed of 4 submodels: PWBM (Paddy Water Balance Model), RWBM (Reservoir Water Balance Model), FA (Frequency and probability Analysis model), and DCI (Drought Classification and Indexing model). Two indices, PDF (Paddy Drought Frequency) and PDI (Paddy Drought Index) were also introduced to classify agricultural drought severity Both values were divided into 4 steps, i.e. normal, moderate drought, severe drought, and extreme drought. Each step of PDI was ranged from +4.2 to -1.39, from -1.39 to -3.33, from -3.33 to -4.0 and less than -4.0, respectively. SRADEMP was applied to Jangheung reservoir irrigation district, and the results showed good relationships between simulated results and the observed data including historical drought records showing that SRADEMP explains better the drought conditions in irrigated paddy districts than PDSI.