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Abstract : Wetlands are lands with a mixture of water, herbaceous or woody vegetation and wet soil.
And linear spectral mixture analysis (LSMA) is one of the most often used methods in handling the
spectral mixture problem. This study aims to test LSMA is an enhanced routine for classification of
wetland land-covers in Paldang reservoir and vicinity (Paldang Reservoir) using Landsat TM and ETM+
imagery. In the LSMA process, reference endmembers were driven from scatter-plots of Landsat bands
3, 4 and 5, and a series of endmember models were developed based on green vegetation (GV), soil and
water endmembers which are the main indicators of wetlands. To consider phenological characteristics of
Paldang Reservoir, a soil endmember was subdivided into bright and dark soil endmembers in spring and
a green vegetation {GV) endmember was subdivided into GV tree and GV herbaceous endmembers in
fall. We found that LSMA fractions improved the classification accuracy of the wetland land-cover. Four
endmember models provided better GV and soil discrimination and the root mean squared (RMS) errors
were 0.011 and 0.0039, in spring and fall respectively. Phenologically, a fall image is more appropriate
to classify wetland land-cover than spring’s. The classification result using 4 endmember fractions of a fall
image reached 85.2 and 74.2 percent of the producer’s and user’s accuracy respectively. This study
shows that this routine will be an useful tool for identifying and monitoring the status of wetlands in
Paldang Reservoir.
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1. Introduction inland wetlands was doubtful, because Spectral

similarities among wetlands, agricultural fields and

For a sustainable development of a watershed,
building accurate inventories and monitoring of
wetlands at risk are very important. Recently inventory
maps for natural resources have been constructed using

remote sensing techniques, but classification accuracy of
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forest can create difficulties in classifying satellite
images (Houhoulis and Mitchener 2000).

Wetlands are lands with a mixture of water,
herbaceous or woody vegetation and wet or saturated

soils and LSMA technique is one of the most often used
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methods in handling the spectral mixture problem.
However, wetland studies using LSMA technique
mostly focused on the vegetation factor (Blaricom et al.,
1996; Williams et al., 1999) and there is little research to
take into account soil and water factors for identification
and classification of wetlands.

This study aims to test fraction images developed
from LSMA can improve classification accuracy of
wetland land-cover, and to achieve an appropriate
processing routine of LSMA. It is possible to obtain
better results if the mixed pixels of wetlands are
decomposed into different proportions of vegetation, soil
and water components, which are the three main
indicators of wetlands. Moreover, this study was
conducted to determine the optimum time of a year to
classify wetlands using two season’s remotely sensed
data.

Although LSMA has been recognized as an effective
method in handling spectral mixture problems, some
uncertainties are still not understood. This paper
contributes to answer some uncertainties of LSMA. For
example, how many and what kind of endmembers were
suitable for wetland classification?, how to select
endmembers manually? and which season is more
appropriate to detect wetland land-cover between spring
and fall?

2. Study Area and Data Used

1) Study Area

Paldang reservoir and catchment protection area and
vicinity areas of four km buffers from the main river
channels of Hangang, Namhangang, Bukhangang and
Kyungancheon River (Paldang Reservoir), were
designated as the focal area for this study. The dominant
flora in Paldang area are cattail (Typha angustata), reed

(Phragmites communis), water chestnut (Trapa

Japonica) community, and so on. The possibility of
accurate classification of wetland land-cover may be
increased by comparing seasonal characteristics of
spring and fall seasons. Phenologically in May, cattails
grow to maturity but rice is transplanted to paddy fields
in Paldang Reservoir. In September, rice and cattails are
in maturity but the understory background material of
paddy fields is wet soil, while the background of
wetlands is saturated soil (Kim and Park, 2003).

2) Field Survey

Basically wetland distributions were investigated
from digital maps from the Ministry of Environment.
Among 49 wetlands in Paldang Reservoir, locations and
types (seasonal or perennial) of 31 wetlands were
detected based on ‘Land-Cover Maps® (1/25,000) and
‘Land Environment Maps’ (1/25,000). And 18 wetlands
omitted from those maps were detected from the field
survey, which were registered with GPS (Trimble
Pathfinder) device to allow integration with spatial data
in GIS and image processing systems. The appearance
of obligate or facultative wetland vegetation was the
main indicator for wetland identification in the field
survey. To overcome the inaccessibility to some of
wetlands and mapping exact location of them, wetland
locations were checked directly by loading the maps
onto PDA connected to the GPS receiver. Spatial data
were processed and integrated as GIS layers using ENVI
3.6 and ArcView v3.2

3. Methodology

1) Endmember Identification

For endmember identification, laboratories at U.S.
Geological Survey, Jet Propulsion Laboratory and
John’s Hopkins University have been supplying several

spectral libraries, and many studies have adopted
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spectral libraries for endmember identifications (Roberts
et al., 1998; Winter 1999; Drake et al., 1999; Sabine et
al., 2002; Kim, 2003). In this study endmembers were
selected from pure features in the imagery, because
spectral libraries, which offer spectral values of
minerals, soils and vegetations of the U.S environment
are rare for Korean natural ecosystems, and utilizing
field spectrometers are not readily available to
researchers.

One approach for choosing endmembers from
imagery is selecting representative and homogeneous
pixels from satellite imagery through visualizing spectral
scatter-plots of image band combinations. When each
endmember is selected from the scatter-plot, the pixel
locations are illustrated in the imagery. For this
interactive and geometric endmember selection,
comprehensive understanding about the site and
empirical portion about imagery characteristics is
necessary.

Ordinarily, endmember selection is followed by
spectral dimension reduction. To reduce the dimension
of the data, Principal Component Analysis (PCA) and
Minimum Noise Fraction (MNF) (Boardman et al.,
1995) algorithm have been applied (Tu et al., 2001; Lee
and Lee, 2003). However, this study did not employ
dimension reduction algorithms of PCA or MNF. PCA
puts almost 90% of the variances on the first two or
three components and minimizes the influence of band
to band correlation. Those dimension reduction methods
were ordinarily used for hyperspectral images (DiPietro,
2002; Kim, 2003), and scatter-plots between newly
created components have difficulties to find the three
pointiest pixels (i.e. near the vertices) as endmembers.

From the scattergram of red and near-infrared bands,
the spectra of mature paddy field or forest located near
the pointiest pixels, But the radiance values of mature
wetlands are generally located in inside the simplex
(convex hull) due to the background effect of ordinary
hydrologic and soil conditions in wetlands. And it has

difficulties of direct determination of the wetland
endmember from the simplex. And, decomposition or
spectral unmixing of the main wetland components into

pieces is necessary.

2) Endmember Models

Numbers of endmembers can be various through the
phenological changes of land-cover characteristics
(Adams et al., 1995; van Wagtendonk and Root, 2000;
Lu et al., 2002). In Paldang Reservoir, by mid-May in
spring, the land-cover of paddy fields is not vegetation
but wet and moist soil. Therefore, a soil endmember can
be specified into bright and dark soil endmembers. In
fall, however, vegetation types of forest, paddy and
grass are in mature by mid-September. So the GV
endmember can be subdivided into GV tree (GVt) and
GV herbaceous (GVh) endmembers in Paldang
Reservoir. Endmember models for two seasons which

are as follows;

a) Spring Image
- 3-endmember model (GV, Soil, Water)
- 4-endmember model(GV, Bright Soil, Dark Soil,
Water)
- S-endmember model(GVt, GVh, Bright Soil, Dark
Soil, Water)

b) Fall Image
- 3-endmember model (GV, Soil, Water)
- 4-endmember model(GVt, GVh, Soil, Water)
- 5-endmember model(GVt, GVh, Bright Soil, Dark
Soil,Water)

To determine endmembers in Paldang Reservoir,
scatter-plots of bands 3, 4 and 5 were mainly utilized
(Fig. 1). Red band (Band 3) and near infrared band(NIR)
(Band 4) have very distinctive three vertices, which
make it easy to determine endmembers from imagery,
and endmembers from these three vertices shows exact
characteristics of three components of wetlands, such as
GV, soil and water. Contrary to other endmember

pixels, the dark soil (e.g. moist soil) pixels are located
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Fig. 1. Identification of GV, Bright Soil, Dark Soil and Water
endmembers in the spring image.

not at a vertex of the scatter-plot but in the middle of the
soil line. So, next to the investigation of pure dark soil
pixels in images, (e.g. moist soil of paddy fields and
barren land near golf links under construction) from site
survey and in the two images, the dark soil endmember
was selected through the spectral scatter-plot along the
soil line (Fig. 1).
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To subdivide GV endmember into GV(GV tree) and
GVh(GV herbacecus) for the four and five-endmember
models, the scatter-plot of Band 4 and Band 5 was also
used. The GVt endmember was identified at the top of
the scatter-plot and the GVh endmember was identified
at the right vertex of the band 4 and band 5 scatter-plot
(Fig. 2). When selecting the endmembers, trial and error
needs be taken to identify endmembers precisely. An
average of 10 to 15 pixels (endmember bundles) of
theses vertices was calculated.

The important thing is to validate whether each land-
cover determined in the scatter-plot, is pure to be an
endmember or not. Therefore, after the endmember
determination from the imagery, purity of illustrated
pixels were investigated through field surveys and on-
screen certification using a SPOT 5 high spatial

resolution image of Paldang Reservoir.

3) Classification of Wetland Land-cover
using LSMA Fractions

To evaluate LSMA is an effective processing routine
or not, and which season is more appropriate to detect

wetland land-cover, four different processing methods
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Fig. 2. (a) Identification of GVt, Soil, and Water in the scatter-plots of the bands 3 and 4 in the fall image. (b) GVh, Soil and Water

endmembers in the scatter-plots of the bands 4 and 5.
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were tested and their classification results using a
maximum likelihood classifier (MLC) were compared.

In supervised classification method, training set data
for five land-cover classes of forest, agriculture (e.g.
paddy and dry field and grass), waterbody, bare land
(including urban areas, roads and bare soil) and wetland,
were collected and defined according to the land-cover
characteristics of Paldang Reservoir and vicinity. Every
training set of five land-cover classes were extracted
from GPS points, general knowledge of the field site
(e.g. field notes) and SPOT 5 high spatial resolution
image. Training set polygons were created on a geo-
referenced true-color display of the image by matching
features in the images visually around Paldang
Reservoir. The following is four different methods to
compare the classification accuracy.

1) MRS : MLC using raw 6-band spring TM image

2) MFS : MLC using fraction images on 6-band

Spring TM image
3) MRF : MLC using raw 6-band fall ETM+ image
4) MFF : MLC using fraction images on 6-band fall
ETM+ image

After the land-cover classification using four
methods, to evaluate the accuracy of wetland
distribution, each wetland class was selected and
segmented to vector layers to be overlaid on the GIS
dataset of the study site. Through the segmentation
procedure, wetland segments of something small below
the 40 pixels (2.7ha) were eliminated. Segmented
wetlands were converted to polygons for the effective
comparison of location. Error matrices were calculated
by comparing the relationships between the location
points of wetlands (from GPS points and the digital
topographic maps) and classified and segmented

wetland polygons.

4. Results and Discussions

1) Comparison of Endmember Models

Land-cover types of Paldang Reservoir vary greatly
by the phenological cycle. For both the spring and fall

imagery, each mean value of RMS error from three, four

Bright Soil

Dark Soil Water RMSE

Fig. 3. Fraction images from Spring TM image (May 21, 1999).

GV herbaceous

Water

Fig. 4. Fraction images from fall ETM+ image (Sept. 23, 2001).
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Table 1. RMS error comparison for the selection of
appropriate endmember selection (Spring Image,
May 21, 1999).

. Mean
RMS error Min | Max | Mean | Stdev 156

3end. model | 0.035 | 55427 | 5517 | 2706 | 0.021
4 end. model | 0.0103 | 43.040 } 2.876 | 1.740 | 0.011
5end. model | 0.0100 | 29.256 | 2.693 | 1521 | 0.010

Table 2. RMS error comparison for appropriate endmember
selection (Fall Image, Sept. 23, 2001).

. Mean
RMS error Min Max | Mean | Stdev 1256

3end. model | 0.020 | 46.231| 2.176 | 1.166 | 0.0082
4end. model | 0.000 |41.853|1.0345| 0.834 | 0.0039
5end. model | 0.001 | 11.099 | 0.9589 | 0.485 | 0.0036

and five endmember model was compared.

In Table 1, the RMS error of five-endmember model
has the least RMS error, but the fraction images pootly
described the bright soil and dark soil conditions in
Paldang Reservoir. The Dark soil fraction image is not
consistent with paddy or fields in seeding or
transplanting in Paldang Reservoir. The four -
endmember unmixing developed high quality fraction
images and the normalized Mean RMS value is 0.011,
which suggests a generally good fit (less than 0.02, see
more Wu and Murray 2002). So in this study,
Considering RMS error and visual interpretation of
fraction images simultaneously, LSMA result of the
four-endmember mode! of GV, bright soil, dark soil and
water were adopted for wetland classification (Table 1).

In case of the fall image (Table 2), the RMS error and
fraction images have similar trends with those of spring,
and fall ETM+ image might best be represented by the

four-endmember model.

2) Fraction Results from LSMA

In the spring image of the four-endmember model,

the GV endmember was selected from a forest area

(adjacent to ridgzline covered with Mongolian Oak
(Quercus mongolica) community), in the Yongmunsan
Mountain in Yangpyong-gun. The dark soil endmember
was selected from paddy field area near Namhangang
River, and bright soils were selected from bare-land of
golf-links under construction and built-up areas of
Yangpyong-eup. The water endmember were selected
from the deep clear water near Sonaesum Island of
Paldang Reservoir.

In case of fall ETM+ image (September 23, ‘01), GV
endmember was subdivided into GVt and GVh in order
to describe the various vegetation types exactly. The
GVt endmember was chosen from a forest area of the
south-east side of the valley near Namhangang River.
The GVh endmember was selected from paddy field
area near Kangsang-myeon using scatter-plot of band 4
and band 5. The soil endmember was chosen from a
construction site in Chonjinam sacred ground. And the
pixels of water endmember were selected as same as the
spring’s.

In the fraction set, brighter pixels mean higher
abundance of the endmember. For Spring TM image
(Fig. 3) in the GV fraction map, forests have significan-
tly higher values, while paddy fields and built-up areas
have very small fraction values. In the dark soil fraction,
core areas of paddy fields have relatively higher values
than others and in the bright soil fraction, built-up areas
have higher values. The last one is the RMS error
fraction image and some bright pixels shows the
residuals estimated from the unmixing.

In the GVt fraction of the fall scene, forests and
wetlands have relatively higher fraction values than
those of paddy fields. In the GVh fraction, paddy fields
and golf links have higher fraction values and water and
forest have lower fraction values (Fig. 4). In the soil
fraction, barren lands and built-up areas have the highest
values and agricultural lands have higher values than
those of wetlands. In September, both aquatic plants and
paddy fields are in maturity, but the understory
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background materials of paddy fields are wet soil, while
the background of wetlands is saturated soil or water

land-cover (Fig. 4).

3) Assessment of Classification Accuracy
of Wetland Land-cover

Error matrices are often used to assess identification
accuracy by comparing the relationship between
ground-truth data (reference data) and classified results
(Congalton, 1991). The producer’s accuracy and user’s
accuracy were calculated based on error matrices.
Reference data from the exact wetland locations from
GPS and ancillary maps were used to quantify the
accuracy of wetland distribution.

Table 3 summarizes the identification accuracy using
6 different methods. Wetland location points and
classified wetland polygons were compared and error
matrices of classification accuracies from four methods
were calculated for quantitative comparison (Table 3).

In case of MRS and MFS, producer’s and user’s
accuracy are very low. It implies that in spring time,
wetland condition being in initial growth and
development, make it difficult to identify exact areas of
wetland land-covers. And similar phenological cycle
from growing to mature of wetlands and forests, makes
it difficult to classify wetlands and forests.

Phenologically, the LSMA of fall images produced
more accurate classification results. If the primary
purpose of the classification is to map the locations of
the wetland land-cover, we might note that the

producer’s accuracy of fall imagery are quite good, and

Table 3. Comparison of classification Accuracy from four

different methods.
Classification Accuracy (%)
. . Spring Fall
Error Matrix Resulting (May 21,99) | (Sep.23, O1)

MRS | MFS | MRF | MFF
Producer’s Accuracy | 40.7 | 426 | 862 | 852
User’s Accuracy 421 | 441 | 648 | 742

this would potentially lead one the conclusion that it is
adequate for the purpose of detecting the wetland land-
cover. But in case of MREF, the user’s accuracy is lower
than those of MFF. In case of MRF, even though 86.2%
of the wetland areas have been correctly identified as
‘wetland’, only 64.8% of the areas were identified as
‘wetland’ within the identification are truly of that
category. So, concerning which methods are appropriate

to, the MFF is the most appropriate one.

5. Conclusions

This study investigated the use of the LSMA in
classification of the wetland land-cover in Paldang
Reservoir. Several endmember models and classification
methods were compared for their success in determining
the spatial extent of the wetlands.

Based on the results, the following conclusions can be
achieved :

1. LSMA fractions are more appropriate to classify
wetland land-covers than when using raw bands of
Landsat imagery. And this routine will be helpful to
detect wetlands in regional scale. The MFF result using
four endmember fractions of a fall image produced 85.2
and 74.2 percent of the producer’s and user’s accuracy
respectively.

2. Phenologically, a fall image is more appropriate to
classify the wetland land-cover than that of spring in
Paldang Reservoir.

3. Considering phenological characteristics to select
endmembers, is crucial for developing high quality
fraction images using LSMA. The mean RMS error
values of four-endmember models of spring (GV, water,
dark soil and bright soil) and fall (GV tree, GV
herbaceous, soil and water), were 0.011 and 0.0039
respectively, and those suggest generally good fit (less
than 0.02).

As a future study, for the type classification of
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wetlands, finer spatial and spectral resolution imagery
should be adopted. The availability of high spatial
resolution imagery to LSMA technique make it easy to
extract wetland information in the mapping level of
plant community. In addition, higher radiometric
resolution may positively influence to detect, classify
and delineate wetland plant communities automatically.
The LSMA routine using hyperspectral imagery can be
an enhanced tool to classify and extract plant

communities effectively and exactly.
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