• 제목/요약/키워드: classification of pattern

검색결과 1,924건 처리시간 0.032초

용접결함의 형상인식을 위한 특징변수 추출에 관한 연구 (A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws)

  • 김재열;노병옥;유신;김창현;고명수
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

"화타현문내조도(華陀玄門內照圖)"에 대(對)한 연구(硏究) (A Study on "HuatuoXuanmenNeizhaotu")

  • 심현아;금경수;정헌영;최현배;엄동명
    • 대한한의정보학회지
    • /
    • 제18권1호
    • /
    • pp.1-63
    • /
    • 2012
  • Objective : "Huatuoxuanmenneizhaotu" is a Huatuo's about 5~6 century works are estimated to be voted for. Scored the first Anatomical Pictures. Expand your knowledge on the anatomy of the later set the foundation. This books is part of two volumes, which is largely divided into six parts. We have concern on the content and features. Method : Through "Huatuoxuanmenneizhaotu" text translation, we will try to categorize two ways : classifying 1) The first volume of Chapter 1, Pictures 2) The second volume divided into four parts, Chapter 2, Viscera Disease and Chapter 3, Viscera metastasize and Chapter 4, Viscera and Bowel each for metastasize, explained. Result : In consideration against Disease symptom classification, Medicine classification, processing of medicinals examine. Viscera Disease symptom each wind pattern(風證), qi pattern(氣證), heat pattern(熱證), cold pattern(冷證), deficiency pattern(虛證) was classified as. Same method were explained as Viscera into Viscera, as Viscera into Bowel. Viscera Disease also not mentioned in the Bowel Disease symptoms were found to be viewed. Conclusion : These results explain "HuatuoXuanmenNeizhaotu" were really diverse and various.

  • PDF

주성분 분석을 활용한 적응형 근전도 패턴 인식 알고리즘 (Adaptive sEMG Pattern Recognition Algorithm using Principal Component Analysis)

  • 김세진;정완균
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.254-265
    • /
    • 2024
  • Pattern recognition for surface electromyogram (sEMG) suffers from its nonstationary and stochastic property. Although it can be relieved by acquiring new training data, it is not only time-consuming and burdensome process but also hard to set the standard when the data acquisition should be held. Therefore, we propose an adaptive sEMG pattern recognition algorithm using principal component analysis. The proposed algorithm finds the relationship between sEMG channels and extracts the optimal principal component. Based on the relative distance, the proposed algorithm determines whether to update the existing patterns or to register the new pattern. From the experimental result, it is shown that multiple patterns are generated from the sEMG data stream and they are highly related to the motion. Furthermore, the proposed algorithm has shown higher classification accuracy than k-nearest neighbor (k-NN) and support vector machine (SVM). We expect that the proposed algorithm is utilized for adaptive and long-lasting pattern recognition.

적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색 (Content-based image retrieval using adaptive representative color histogram and directional pattern histogram)

  • 김태수;김승진;이건일
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.119-126
    • /
    • 2005
  • 본 논문에서는 영상의 블록 분류 특성에 적응적인 대표 컬러 히스토그램 (representative color histogram)과 방향성 패턴 히스토그램 (directional pattern histogram)을 이용한 새로운 내용 기반 영상 검색 방법 (content-based image retrieval)을 제안한다. 제안한 방법에서는 영상을 일정한 크기의 블록으로 나누고, 분할된 블록의 분류 특성에 따라 컬러와 패턴 특징 벡터를 추출한다. 먼저 분할된 블록을 채도 (saturation)에 따라 휘도 블록 또는 컬러 블록으로 분류한 후, 휘도 블록에 대해서는 블록 평균휘도 쌍의 히스토그램을 구하고, 컬러 블록에 대해서는 블록 평균 컬러 쌍 히스토그램을 구함으로써 블록 분류 특징에 따라 컬러 특징 벡터를 추출한다. 또한 블록 휘도 변화의 기울기 (gradient)를 계산하여 방향성 분류를 행한 후 히스토그램을 계산함으로써 블록 방향성 패턴 특징을 추출한다. 본 논문에서 제안한 영상 검색 방법의 성능을 평가하기 위해서 컴퓨터 모의실험을 행한 결과 제안한 방법이 기존의 방법들보다 정확도 (precision) 및 특징 벡터 차원 (feature vector dimension) 크기 등의 객관적인 측면에서 우수함을 확인하였다.

신경망을 이용한 DNA칩 영상 패턴 분류 알고리즘 (Pattern Classification Algorithm of DNA Chip Image using ANN)

  • 주종태;김대욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.556-561
    • /
    • 2006
  • DNA칩 영상의 패턴 분류는 인간의 유전적 질병에 대한 유용한 정보를 획득할 수 있다는 점에서 아주 중요한 것이다. 본 논문에서는 DNA칩 영상의 패턴을 분류하기 위해 신경망의 학습 알고리즘 중 Back-propagation과 Self Organizing Map을 이용하여 패턴을 분류하는 알고리즘을 개발하고 이들의 결과를 비교 분석하였다. 또한 개발한 알고리즘은 PC 환경 및 S3C2440 (ARM920T)을 CPU Core로 사용한 MV2440 보드에서 실험하여 그 결과를 디스플레이 함으로써 사용자가 다양한 환경에서 보다 쉽게 유전자 정보를 얻는데 도움을 줄 수 있도록 하였다.

클러스터링 기법을 이용한 수용가별 전력 데이터 패턴 분석 (Customer Load Pattern Analysis using Clustering Techniques)

  • 유승형;김홍석;오도은;노재구
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2016
  • Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

한국표준질병사인분류중 한방내과영역의 분류체계 개선 및 진단명 구성에 관한 연구 (The Research about the Classification System Improvement and Cord Development of Korean Classification of Disease on Oriental Internal Medicine)

  • 이원철
    • 대한한방내과학회지
    • /
    • 제31권1호
    • /
    • pp.1-10
    • /
    • 2010
  • Objectives : It is necessary that the international classification of diseases (ICD) be examined in order to comprise the third revision of the Korean Classification of Disease on Oriental Medicine (KCD-OM) and disease classification in the oriental internal medicine field. It is essential that the selection, classification and definition of disease and pattern names of oriental concepts in internal medicine be clear. Since 2008, the fifth revision of the Korean Classification of Disease (KCD-5) has been used in Korea. It was required to use the reference classification from the Oriental medicine area based on the ICD-10. Methods : In this review, the necessity for, meaning of and content of the third revision are briefly described. The ICD system was reviewed and KCD-OM was reconstructed. How diagnosis in the oriental internal medicine area had changed is discussed. Review and Results : In 1973, the disease classification of oriental medicine was established the basis on the contents of Dongeuibogam. It was irrespective of the ICD. As to the classification system in the Oriental internal medicine field, systemic disease was comprised of wind, cold, warm, wet, dryness, heat, spirit, ki, blood, phlegm and retained fluid, consumptive disease, etc. Diseases of internal medicine comprised a system according to the five viscera and the six internal organs and followed the classification system of Dongeuibogam. The first and second revisions were of the classification system based on the curriculum in 1979 and 1995. In 1979, in the first revision, geriatric disease and idiopathic types of disease were deleted, and skin disease was included among surgery diseases. This classification was expanded to 792 small classification items and 1,535 detailed classification items to the dozen disease classes. In 1995, in the second revision, it was adjusted to 644 small classes and 1,784 detailed classification items in the dozen disease classes. KCD-OM3 did KCD from this basis. It added and comprised the oriental medical doctor's concept names of diseases considering the special conditions in Korea. KCD-OM3 examined the KCD-OMsecond revised edition (1994). It improved the duplex classification, improper classifications, etc. It is difficult for us to separate the disease names and pattern names in oriental medicine. We added to the U code and made one classification system. By considering the special conditions in Korea, 169 codes (83 disease name codes, 86 pattern name codes) became the pre-existence classification and links among 306 U codes of KCD-OM3. 137 codes were newly added in the third revision. U code added 3 domains. These are composed of the disease name (U20-U33, 97 codes), the disease pattern name (U50-U79, 191 codes) and the constitution pattern name of each disease (U95-U98, 18 codes). Conclusion : The introduction of KCD-OM3 conforms to the diagnostic system by which oriental medical doctors examine classes used with the basic structure of the reference classification of WHO and raises the clinical study and academic activity of the Korean oriental medicine and makes the production of all kinds of nation statistical indices possible. The introduction of KCD-OM3 promotes the diagnostic system by which doctors of Oriental medicine examine classes using the association with KCD-5. It will raise the smoothness and efficiency of oriental medical treatment payments in the health insurance, automobile insurance, industrial accident compensation insurance, etc. In addition, internationally, the eleventh revision work of the ICD has been initiated. It needs to consider incorporating into the International Classification of Diseases some of every country's traditional medicine.

퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용 (Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification)

  • 손창식;서석태;정환묵;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.685-691
    • /
    • 2008
  • 퍼지 규칙기반 분류 시스템에서 위한 퍼지 분할 경계들의 선택은 중요하고 어려운 문제이다. 그래서 이들을 효과적으로 결정하기 위해서 신경망, 유전자알고리즘 등과 같은 학습과정에 기반을 둔 다양한 방법들이 제안되었고, 이전 연구에서는 이들 방법에 대한 문제점을 지적하고 이를 개선하기 위하여 중첩 형태에서 퍼지 분할을 결정할 수 있는 방법에 대해서 논의하였다. 본 논문에서는 이전 연구의 방법을 3가지 형태의 분류 경계들, 즉 비중첩, 중첩, 1점 인접 형태로 확장하였다. 또한 이들을 학습에 의존하지 않고 주어진 데이터로부터 얻어진 통계적 정보만을 사용하여 결정하는 방법을 제안하고, 이를 패턴 분류 문제에 적용하여 제안된 방법의 효용성을 보인다.

한국어 특성을 고려한 감성 분류 (Sentiment Classification considering Korean Features)

  • 김정호;김명규;차명훈;인주호;채수환
    • 감성과학
    • /
    • 제13권3호
    • /
    • pp.449-458
    • /
    • 2010
  • 다양한 분야에서 인터넷 상의 방대한 양의 문서 혹은 리뷰로부터 유용한 정보를 얻고자 하는 노력이 높아짐에 따라 문서 혹은 리뷰 상의 생각 및 의견에 대한 자동 분류 연구의 필요성이 대두되었다. 이러한 자동분류를 감성 분류라 하며, 감성 분류 연구는 크게 세 가지 단계를 가지는데, 첫 번째로 주관적인 생각이나 느낌을 표현하는 문장을 추출하기 위한 주관성 분류 연구, 두 번째로 문서 또는 문장을 긍정, 부정으로 나누는 극성 분류 연구, 그리고 세 번째로 문서 또는 문장이 어느 정도의 주관성 및 극성을 갖는지 그 강도를 구하는 강도 분류 연구이다. 최근 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용하는 것을 확인할 수 있다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 이용한 많은 연구가 이루어져 왔다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한편, 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하였다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.

  • PDF

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.