The primary purpose of this study is to examine consumers'probing actions to see what information sources consumers search for medical information when there are diverse medical service information channels, and classify consumers by information source. Its secondary purpose is to understand trust of information and attitude toward information by consumer type, value of medical service, satisfaction with medical service, and word-of-mouth intention. This study will concretely identify information utilization patterns of medical consumers, and explain the unique characteristics and behavior of segmented types of medical consumers. The significance of this study lies in the search for ways to establish information channels trusted by consumers for building an efficient medical service market in the future. The results of this study show that consumers were classified by the latent class analysis(LCA) into 5 types: low-level information seekers, word-of-mouth information seekers, mass media information seekers, digital information seekers and diverse information seekers. The reliability of information sources by type of medical consumer was statistically significant, and in the analysis of differences in consumer attitude, there was a statistically significant difference in cognitive responses. The value of medical service was statistically significant in health recovery and medical service word-of-mouth intention.
의료 인공지능 분야에서 의사의 판단에 도움을 줄 수 있는 질환 예측 및 분류 알고리즘에 대해선 많은 연구가 이뤄져왔지만, 의료 소비자의 정보 획득과 판단에 도움을 줄 수 있는 인공지능에 대해선 상대적으로 관심이 적다. 네이버 지식인에 지난 1년 간 자신의 증상엔 어떤 병원을 가야할 지 질문하는 질문 건수만 해도 15만 건이 넘는다는 사실은 의료소비자들에게 적합한 의료정보의 제공이 필요하다는 반증이기도 하다. 따라서 본 연구에선 의료소비자들이 자신의 증상에 대한 진료과목을 선택하는데 도움을 줄 수 있도록 네이버 지식인에서 환자들이 직접 서술한 증상 텍스트를 수집하여 8개 진료과목을 분류하는 분류모델을 구축했다. 우선 환자의 주관이 개입된 데이터의 타당성과 객관성을 확보하기 위해 객관적 증상 텍스트(서울응급의료 정보센터에서 정리한 진료과목 별 주요 질환 증상)와 주관적 증상 텍스트(지식인 데이터) 간 유사도 측정을 수행하였다. 유사도 측정 결과, 두 텍스트가 동일한 진료과목의 증상일 경우 상이한 진료과목의 증상 텍스트에 비해 상대적으로 높은 유사성을 가진다는 것을 입증했다. 상기 절차를 따라 타당성을 확보한 주관적 증상 텍스트를 대상으로 릿지회귀모델을 사용하여 분류모델을 구축한 결과 0.73의 정확도를 확보할 수 있었다.
In November 2013, the US Food and Drug Administration (FDA) sent a warning letter to 23andMe, Inc. and ordered the company to discontinue marketing of the 23andMe Personal Genome Service (PGS) until it receives FDA marketing authorization for the device. The FDA considers the PGS as an unclassified medical device, which requires premarket approval or de novo classification. Opponents of the FDA's action expressed their concerns, saying that the FDA is overcautious and paternalistic, which violates consumers' rights and might stifle the consumer genomics field itself, and insisted that the agency should not restrict direct-to-consumer (DTC) genomic testing without empirical evidence of harm. Proponents support the agency's action as protection of consumers from potentially invalid and almost useless information. This action was also significant, since it reflected the FDA's attitude towards medical application of next-generation sequencing techniques. In this review, we followed up on the FDA-23andMe incident and evaluated the problems and prospects for DTC genetic testing.
International Journal of Knowledge Content Development & Technology
/
제7권1호
/
pp.101-120
/
2017
Healthcare professionals have edited many health questions (HQs) and their answers for healthcare consumers on the Internet. The HQs provide both readable and reliable health information, and hence retrieval of those HQs that are relevant to a given question is essential for health education and promotion through the Internet. However, retrieval of relevant HQs needs to be based on the recognition of the intention of each HQ, which is difficult to be done by predefining syntactic and semantic rules. We thus model the intention recognition problem as a text classification problem, and develop two techniques to improve a learning-based text classifier for the problem. The two techniques improve the classifier by location-based and area-based feature weightings, respectively. Experimental results show that, the two techniques can work together to significantly improve a Support Vector Machine classifier in both the recognition of HQ intentions and the retrieval of relevant HQs.
Radiation technology is the one for developing new products or processes by applying radiation or for creating new functions in industry, research and medical fields, and its application is increasing consistently. For securing an advanced technology competitiveness, it is required to create a new added value by information consumer through providing an efficient system for supporting information, which is the infrastructure for research and development, contributed to its collection, analysis and use with a rapidity and structure in addition to some direct research and development. Provision of the management structure for information resources is especially crucial for efficient operating the system for supporting information in radiation technology, and then a standard classification structure of information must be first developed as the system for supporting information will be constructed. The standard classification structure has been analyzed by reviewing the definition of information resources in radiation technology, and those classification structures in similar systems operated by institute in radiation and other scientific fields. And, a draft version of the standard classification structure has been then provided as 7 large, 25 medium and 71 small classifications, respectively. The standard classification structure in radiation technology will be developed in 2015 through reviewing this draft version and experts' opinion. Finally, developed classification structure will be applied to the system for supporting information by considering the plan for constructing this system and database, and requirements for designing the system. Furthermore, this structure will be designed in the system for searching information by working to the individual need of information consumers.
행복한 삶의 질을 목적으로 하는 의료소비자가 증가하면서 웹에 분산되어 있는 블로그의 의료 정보를 바탕으로 신뢰성 있는 의료 시설을 선택하고 고품질의 의료 서비스를 받음으로서, 시간과 비용을 절약할 수 있는 O2O 의료 마케팅 시장이 활성화 되고 있다. 인터넷, 모바일, SNS 등에서 증가하는 비정형 텍스트 데이터는 전문 의료 지식 이외에 작성자의 관심, 선호, 예상 등을 직간접적으로 반영하고 있기 때문에 의료정보의 신뢰성을 담보하기 어렵다. 본 연구에서는 빅데이터 및 MLP를 사용하여 의료정보 블로그를 분류 (의료블로그, 광고블로그)함으로서 사용자에게 보다 고품질의 의료정보 서비스를 제공하는 블로그 판단 시스템을 제안한다. 제안된 빅데이터 및 머신러닝 기술을 통해 인터넷상에 존재하는 국내의 다수 의료정보 블로그를 종합, 분석한 후 질환별 개인 맞춤형 건강정보 추천 시스템을 개발한다. 이를 통하여 사용자는 자신의 건강문제를 지속적으로 점검하고 가장 적절한 조치를 취함으로서 자신의 건강 상태를 유지하는 것이 가능할 것으로 기대된다.
AI 기술이 결합된 지능형 제품은 기술적 차별화를 실현하며 시장 경쟁력을 높일 수 있는 잠재성을 지닌다. 하지만 시장 수용도를 극대화 할 수 있는 AI 기반의 신제품 개발 방법론은 부재하다. 본 연구는 AI 기반의 지능형 제품 개발에 대한 방법론으로서 KANO-QFD 통합 모델을 제안한다. 실증적인 분석을 위한 구체적 사례로 탈모 예측 및 치료 기기에 대한 소비자 요구조건(Customer Requirements)의 유형을 분류하고, 이를 구현하기 위한 기술적 요구사항(Engineering Characteristics)의 상대적 중요도 및 우선순위를 도출하여 지능형 메디컬 신제품 개발의 방향을 제시하였다. 소비자 130명을 대상으로 실시한 설문조사 분석 결과, KANO 카테고리 중 매력적 품질(Attractive Quality) 요소로 미래 탈모 진행 상황에 대한 정확한 예측, 미래 탈모 모습 및 치료 후 개선된 미래 모습을 실물화하여 스마트폰으로 보고, 세련된 디자인, 레이저와 LED 빛 복합 에너지를 이용한 치료 등이 도출되었다. QFD의 품질의 집(House of Quality)을 기반으로 분석한 결과, 탈모 진단 및 예측을 위한 학습 데이터, 두피 스캔용 Micro 카메라 해상도, 탈모 유형 분류 모델, 맞춤화를 위한 개인별 계정 관리, 탈모 진행상황 진단 모델 순으로 상대적 중요도 및 우선순위가 도출되었다. 본 연구는 기존에 선행되지 않았던 AI 기반의 지능형 메디컬 제품 개발에 대한 방향을 제시하였다는 면에서 의의를 지닌다.
The study is to grasp the problems related to operation of Maternity clinic of public health centers in seoul and needs for public health of community in relation to consumers and providers in order to improve efficiency of community public health for mothers and children. Four pregnancy woman, who receive medical care at the maternity clinic of M public health centers in seoul and understand the purpose of this study, and one nurse who works at the were the objects of this field study. Participating observation and intensive interviews were conducted to collect data. All of them were performed as necessary from time to time since December, 1994, and not during a specific period. Through an data analysis in the order of sector analysis and classification analysis, the data were classified into specific patterns and the results are the following; 1. All of the subjects were using both private hospitals and public clinics, but managing activities prior to delivery were not carried out in accordence with theories for those activities. 2. The subjects showed two types of response to utilizing maternity clinic. they answered that the advantages of the clinic were 'short waiting time for medical treatment', 'medical treatment by female doctors' and 'economical benefit.' Meanwhile, they gave negative response to the problems of 'non-implementation of delivery' 'uncleanness and insufficient facilities', 'limited time of treatment', 'lack of expertise' and 'want of public health education for materity.' 3. Problems related to operation of maternity clinic were 'lack of experts', 'irrational facility structure' and 'absolutely lack budget'. In terms of the status of managing the subjects, 'programs only aimed at attaining the central-government-assigned objects' and 'limited management before and after delivery by non-implementing delivery' were pointed out to be problems. Regarding public health education before delivery and PR relations, 'superficial public health education for maternity' and 'absence of PR programs' were named. In planning and evaluation, 'absence of autonomous planning and evaluation by the clinic itself' was a major problem in operating the clinic. 4. 'Substantial health education and PR', 'supplementation of facilities and eqipment', 'development' and supply of demanded service by the subjects', 'implementation of autonomous programs', and 'reinforcement of supplementary education' were presented as alternatives for efficient opration of maternity clinics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.