• 제목/요약/키워드: classification algorithm

검색결과 2,919건 처리시간 0.03초

RPA분류기의 성능 향상을 위한 OHC알고리즘 (OHC Algorithm for RPA Memory Based Reasoning)

  • 이형일
    • 한국멀티미디어학회논문지
    • /
    • 제6권5호
    • /
    • pp.824-830
    • /
    • 2003
  • 메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안되었던 RPA(Recursive Partition Averaging)알고리즘은 대상 패턴 공간을 분할 한 후 대표 패턴을 추출하여 분류 기준 패턴으로 사용한다. 이 기법은 구성된 초월 평면상에서 단순히 대표패턴을 추출하여 분류 성능 저하의 원인이 되는 단점을 가지고 있었다. 여기에서는 기존 RPA의 단점을 보완하기 위해 FPD (Feature-based Population Densimeter)를 이용한 OHC (Optimized Hyperrectangle Calving) 알고리즘을 제안한다. 제안된 알고리즘은 RPA분할 종료 후 OHC를 이용하여 초월 평면을 최적화한 후 패턴 평균 기법을 적용하여 학습 결과를 산출한다. 제안된 알고리즘은 k-NN분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며 분류에 있어서도 RPA보다 우수한 인식 성능을 보이고 있다. 또한 저장된 패턴의 감소로 인하여, 실제 분류에 소요되는 시간비교에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.

  • PDF

수입 화물의 위험 기반 검사(RBI)를 위한 규칙 기반 위험 분류 알고리즘의 설계 및 구현 (Design and Implementation of a Rule-based Risk Classification Algorithm for Risk-based Inspection (RBI) of Imported Goods)

  • 차주호;허훈
    • 디지털산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.129-136
    • /
    • 2023
  • In this paper, we describe a rule-based risk classification algorithm to perform Risk-based Inspection (RBI) on imported goods at customs. The RBI system is a method to automatically select which cargos have to be inspected and manage potential risks in boarder. In this study, we designed a rule-based risk classification algorithm for RBI solutions and implemented them using the Svelte web application framework. The risk classification algorithm proposed in this paper uses different indicative risk factors such as HS code, country of origin, importer's reliability, trade relationships, and logistics routes to classify cargos into Green, Yellow, and Red channels. To achieve this, we assigned risk categories to each risk factor and randomly generated risk scores within a specific range for each risk category. This system is expected to contribute to the increased efficiency of customs operations and protect public safety by minimizing the risk of imported hazardous materials.

차분진화 알고리즘을 이용한 Nearest Prototype Classifier 설계 (Design of Nearest Prototype Classifier by using Differential Evolutionary Algorithm)

  • 노석범;안태천
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.487-492
    • /
    • 2011
  • 본 논문에서는 가장 단순한 구조를 가진 Nearest Prototype Classifier의 성능 개선을 위해 차분 진화 알고리즘을 적용하여 prototype의 위치를 결정하는 방법을 제안하였다. 차분 진화 알고리즘을 이용하여 prototype의 위치 벡터가 결정이 되며, 차분 진화 알고리즘에 의해 결정된 prototype의 class label을 결정하기 위한 class label 결정 알고리즘도 제안하였다. 제안된 알고리즘의 성능 평가를 위해 기존의 패턴 분류기와 비교 결과를 보인다.

공차를 고려한 다각형 영역의 내외부 판별 알고리즘 (Tolerance-based Point Classification Algorithm for a Polygonal Region)

  • 정연찬;박준철
    • 한국CDE학회논문집
    • /
    • 제7권2호
    • /
    • pp.75-80
    • /
    • 2002
  • This paper details a robust and efficient algorithm for point classification with respect to a polygon in 2D real number domain. The concept of tolerance makes this algorithm robust and consistent. It enables to define‘on-boundary’ , which can be interpreted as either‘in-’or‘out-’side region, and to manage rounding errors in floating point computation. Also the tolerance is used as a measure of reliability of point classifications. The proposed algorithm is based on a ray-intersection technique known as the most efficient, in which intersections between a ray originating from a given test point and the boundary of a region are counted. An odd number of intersections indicates that the point is inside region. For practical examples the algorithm is most efficient because most edges of the polygon region are processed by simple bit operations.

레이저 스캐너를 이용한 장애물 탐색 및 분리 알고리즘 개발 (Obstacle Detection and Classification Algorithm using a Laser Scanner)

  • 이기룡;홍석교;좌동경
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.677-685
    • /
    • 2008
  • This paper proposes algorithm for the obstacle detection and classification using a single laser scanner. In a measurement data from a laser scanner, there exist points with large differential value called singular points, which can be used to obtain the boundary of an obstacle such that obstacle information can be analyzed. On the other hand, measurement data include a lot of measurement error, which makes it difficult to analyze the accurate obstacle information. To solve this problem, the least square estimation algorithm is used to obtain the accurate information using a single laser scanner, by compensation for the measurement error. This algorithm can be used for the effective obstacle avoidance of mobile robots, and the experimental results are included to demonstrate the effectiveness of the propose algorithm.

Evaluation Method of College English Education Effect Based on Improved Decision Tree Algorithm

  • Dou, Fang
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.500-509
    • /
    • 2022
  • With the rapid development of educational informatization, teaching methods become diversified characteristics, but a large number of information data restrict the evaluation on teaching subject and object in terms of the effect of English education. Therefore, this study adopts the concept of incremental learning and eigenvalue interval algorithm to improve the weighted decision tree, and builds an English education effect evaluation model based on association rules. According to the results, the average accuracy of information classification of the improved decision tree algorithm is 96.18%, the classification error rate can be as low as 0.02%, and the anti-fitting performance is good. The classification error rate between the improved decision tree algorithm and the original decision tree does not exceed 1%. The proposed educational evaluation method can effectively provide early warning of academic situation analysis, and improve the teachers' professional skills in an accelerated manner and perfect the education system.

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

의사결정트리의 분류 정확도 향상 (Classification Accuracy Improvement for Decision Tree)

  • 메하리 마르타 레제네;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

실외 주행 로봇의 이동 성능 개선을 위한 지형 분류 (Terrain Classification for Enhancing Mobility of Outdoor Mobile Robot)

  • 김자영;이종화;이지홍;권인소
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.339-348
    • /
    • 2010
  • One of the requirements for autonomous vehicles on off-road is to move stably in unstructured environments. Such capacity of autonomous vehicles is one of the most important abilities in consideration of mobility. So, many researchers use contact and/or non-contact methods to determine a terrain whether the vehicle can move on or not. In this paper we introduce an algorithm to classify terrains using visual information(one of the non-contacting methods). As a pre-processing, a contrast enhancement technique is introduced to improve classification of terrain. Also, for conducting classification algorithm, training images are grouped according to materials of the surface, and then Bayesian classification are applied to new images to determine membership to each group. In addition to the classification, we can build Traversability map specified by friction coefficients on which autonomous vehicles can decide to go or not. Experiments are made with Load-Cell to determine real friction coefficients of various terrains.

인공지지체 불량 분류를 위한 기계 학습 알고리즘 성능 비교에 관한 연구 (A Study on Performance Comparison of Machine Learning Algorithm for Scaffold Defect Classification)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.77-81
    • /
    • 2020
  • In this paper, we create scaffold defect classification models using machine learning based data. We extract the characteristic from collected scaffold external images using USB camera. SVM, KNN, MLP algorithm of machine learning was using extracted features. Classification models of three type learned using train dataset. We created scaffold defect classification models using test dataset. We quantified the performance of defect classification models. We have confirmed that the SVM accuracy is 95%. So the best performance model is using SVM.