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Abstract 

Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the 
training dataset will not lead to robust classification performance. Such instances may cause the generated decision 
tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly 
used for solving various real world classification problems in data mining. In this paper, we introduce a 
preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the 
proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the 
training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the 
proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed 
method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold cross-
validation, respectively.  
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1. Introduction 

Classification is a data mining function that describes and 
distinguishes data classes or concepts. The goal of 
classification is to predict accurate class labels of instances 
whose attribute values are known, but whose class values are 
unknown. 

Real-world data tend to be dirty, incomplete, and 
inconsistent. To build good model for classification 
algorithms, we should first preprocess the data. Data 
preprocessing, a critical initial step in data mining work, is 
often used to improve the quality of training data set, thereby 
helping to improve the accuracy and efficiency of the 
subsequent mining process. To do so data cleaning and 
preparation is the core task of data mining which is 
dependent on chosen software and algorithms [1]. 

This paper presents a preprocessing technique for scaling 
up the decision tree classifier accuracy. We applied naive 
Bayes classifier on the training dataset to remove 
troublesome instances. This method able to automatically 
extract the most valuable training datasets from noisy 
complex training data before constructing the learning tree 
for decision making. It will also reduce the risks associated 
with over-fitting. As good quality data helps the mining 
purpose to get good performance, this proposed 
preprocessing technique helps to get better quality training 
dataset and impressive accuracy results by removing noisy 

contradictory instances.  

The rest of the paper is organized as follows: Section 2 
introduces existing works related to decision tree. Section 3 
and 4 present our proposed algorithm and the experimental 
results, respectively. Finally, the conclusion is drawn in 
Section 5. 

2. Related Works 

Decision tree is a fast and efficient algorithm of data 
mining in classification and prediction. After the first 
decision tree algorithm was proposed [2], numerous 
algorithms have been proposed by different researchers to 
improve the classification accuracy of the decision tree. 
Some of the classic examples of decision tree algorithms are 
ID3, CART, C4.5, C5.0, CHAID, and SPRINT. C4.5 is based 
on the improvement of ID3.  

 
In [3], the proposed decision tree algorithm is based on 

sample selection to improve the classification accuracy and 
to find the best training dataset. In sample selection, they 
used iteration process to find the best training set. Using 
accuracy of the selected sample training as iteration, 
Information is highly optimized. In [4], the proposed 
algorithm avoids the over-fitting and complexity problems 
suffered in the construction of decision trees. This algorithm 
combines the attribute selection and data sampling processes 
without the pruning phase. 
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To overcome over-fitting problem, a post-pruning 
decision tree algorithm was proposed based on Bayesian 
theory [5]. Each branch of the decision tree generated by the 
C4.5 algorithm was validated by Bayesian theorem, and then 
those branches that do not meet the conditions will be 
removed from the decision tree. The Bayesian theory puts a 
post-pruning technique which utilizes two types of 
verification strategies; i.e., necessity, and sufficiency. This 
theory was applied to enhanced the accuracy of the given 
decision tree [6]. Tsallis Entropy Information Metric (TEIM) 
algorithm was proposed with a new split criterion and new 
construction method of decision tree [7]. The new split 
criterion is based on two terms of Tsallis conditional entropy, 
which is better than conventional split criteria, whereas the 
new construction method is based on a two-stage approach 
that avoids local optimum to a certain extent.  By 
combining all the strengths of Tsallis entropy, outstanding 
performance in accuracy and complexity was achieved by 
this novel decision tree algorithm, TEIM algorithm. 

 
3. Proposed Algorithm 

In this section, we present a naive Bayes classifier and the 
proposed algorithm. 

3.1 Naive Bayes Classifier
A naive Bayes classifier is a simple probabilistic based 

method, which can predict class membership probabilities [8]. 
It is easy to use and requires only one scan of the training 
data for probability generation. It can also handle missing 
attribute values easily by simply omitting the corresponding 
probabilities for those attributes when calculating the 
likelihood of membership for each class. The naive Bayes 
classifier also requires class conditional independence; i.e., 
the effect of an attribute on a given class is independent of 
those of other attributes. 

For a given training dataset, T = {D1,D2,... Dn}, each data 
record is represented as, Di = {d1,d2,... dn}. D contains the 
following attributes, {A1,A2,... An} and each attribute Ai 
contains the following attribute values, {Ai1,Ai2,... Aim}. The 
attribute values can be discrete or continuous. T also contains 
a set of classes, C = {C1,C2,... Cz}. Each training instance, D 

 T, has a particular class label Ci. For a test instance, D, the 
classifier will predict that D belongs to the class with the 
highest posterior probability, conditioned on D. That is, the 
naive Bayes classifier predicts that the instance D belongs to 
the class, Ci, if and only if P(Ci|D) > P(Cj|D)  for 1  j  z, 
j i. The class Ci for which P(Ci|D) is maximized is called the 
Maximum Posterior Hypothesis and is calculated as in (1). In 
Bayes theorem, as shown in (1), P(D) is a constant for all 
classes and therefore, only P(D|Ci)P(Ci) needs to be 
maximized.  

 

................................(1)                 
 

where: P(C|D) - the posterior probability of class (target)      
given predictor (attribute).  

P(C) - the prior probability of class.  

P(D|C) - the likelihood which is the probability 
 of predictor given class.  

P(D) - the prior probability of predictor. 

3.2 Preprocessing Algorithm  
We proposed a preprocessing technique to find higher 

quality data to apply to the C4.5 decision tree classifier. The 
proposed algorithm is based on the naive Bayes classifier in 
order to remove noisy instances from the training dataset.  

For the training dataset, T, we first applied a basic naive 
Bayes classifier to classify each training instance, di  T. We 
calculated the prior probability, P(Ci), for each class, Ci  T 
and the class conditional probability, P(Aij|Ci), for each 
attribute value in D. We did the same even if the attribute 
value was numeric. Then we classified each training instance, 
di  T, using these probabilities. The class, Ci, with the 
highest posterior probability, P(Ci|di), was selected as the 
final classification for the instance, xi. Then we removed all 
the misclassified training instances from the dataset T. In our 
experiments, these misclassified instances tended to be the 
troublesome training instances. The presence of such noisy 
training instances is more likely to cause a decision tree 
classifier to cause over-fitting, and thus decrease its accuracy. 

After removing those misclassified instances from the 
training dataset, T, we subsequently built a decision tree for 
decision making using the updated, purely noise free, 
training dataset T. We present the proposed algorithm as 
follows: 

 
Preprocessing Algorithm 

Input: Training dataset (T) = {d1,d2, . . . ,dn} 

Output: Training dataset with correctly classified instances 

Method:  

1: For each class, Ci T, 

2: Calculate prior probabilities, P(Ci). 

3: End For 

4: For each attribute value, Aij  T,  

5: Calculate class conditional probabilities, P(Aij/Ci). 

6: End For 

7: For each training instance, di  T,  

8: Calculate posterior probability, P(Ci/di) 

9: If di is misclassified,  

10: Remove di from T; 

11: End If 

12: End For 
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4. Experiments 

4.1 Data Source 

In this paper, the experimental data was collected from 
MDM Global (http://www.mdmglobal.co), online sports 
apparel retailer in Asia. There were 49,871 sales records 
collected over a period of 27 days from August 1, 2014 to 
August 27, 2014, inclusive. The data represented in a 
sequence of time-stamped points. 

4.2 Experimental Setup 

The experiments were conducted using Windows 7, 64-
bit OS, with a 2.5GHz Dual Intel Core i5 Processor and 8GB 
of RAM. The experiments were performed using Weka 3.8.0, 
which is an open source data mining software [9] for 
building models, evaluation, and analysis of the classifier 
models. Microsoft Excel was used for data preparation, 
preprocessing and analysis tasks. The proposed 
preprocessing algorithm was implemented in Java, using 
Eclipse Java EE IDE 4.5.2 and experiment results were 
plotted using SigmaPlot 10.0 [10]. 

To test the proposed algorithm, we used classification 
accuracy as in (2) and 10-fold cross validation.  

......................(2)                

 
   where TP, TN, FP and FN denote True Positives, True 
Negatives, False Positives and False Negatives, respectively. 

The 10-fold cross-validation breaks data into 10 sets of 
sizes N/10. It trains the classifier on 9 datasets and tests it 
using the remaining one dataset. This process repeats 10 
times and a mean accuracy rate is calculated. 

4.3 Results and Discussion  

According to the experimental results, the proposed 
preprocessing technique reduced the size of the training 
dataset from 49,871 to 35,782 records. The proposed 
algorithm helps to increase the training dataset quality by 
removing noisy instances. 

We evaluated the performance of the proposed algorithm 
against the existing C4.5 decision tree classifier based on 
classification accuracy. Figure 1 shows the classification 
accuracy for both classifiers based on training dataset. It 
shows that he proposed decision tree classifier outperformed 
the existing C4.5 decision tree classifier by 8.5%. Moreover, 
the result in Figure 2 indicates the proposed decision tree 
classifier was improved the classification accuracy rate by 
14.32% using 10-fold cross validation.

 
(Figure 1) Classification accuracy with training dataset 

 

(Figure 2) Classification accuracy with 10-fold cross 
validation 

 

5. Conclusion 

In this paper, we have introduced a preprocessing 
algorithm to improve decision tree classifier performance. 
The proposed method applied the naive Bayes classifier to 
remove noisy instances from the training dataset before the 
decision tree induction. The Experiment evaluation results 
prove that the efficiency of the proposed decision tree 
algorithm outperforms the existing C4.5 decision tree 
classifier. The evaluation results are summarized in Table 1. 
In future work, we will test more classification performances 
based on training time, precision, sensitivity, and specificity. 
 

<Table 1> Performance Summary
 Existing C4.5 

Decision Tree 
Classifier 

Proposed 
Decision Tree  

Classifier 
Accuracy on Training 
Dataset  (%) 86.02 94.52 

Accuracy on 10-fold 
cross validation (%) 67.26 81.58 
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