

 *, *

*e-mail : marta_rezene@yahoo.co.uk

Classification Accuracy Improvement for Decision Tree

Mehari Marta Rezene*, Sanghyun Park*
Dept. of Computer Science, Yonsei University

Corresponding Author

Abstract

Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the
training dataset will not lead to robust classification performance. Such instances may cause the generated decision
tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly
used for solving various real world classification problems in data mining. In this paper, we introduce a
preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the
proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the
training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the
proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed
method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold cross-
validation, respectively.

 Keywords Preprocessing; Classification Accuracy; Naive Bayes Classifier; Decision Tree

1. Introduction

Classification is a data mining function that describes and
distinguishes data classes or concepts. The goal of
classification is to predict accurate class labels of instances
whose attribute values are known, but whose class values are
unknown.

Real-world data tend to be dirty, incomplete, and
inconsistent. To build good model for classification
algorithms, we should first preprocess the data. Data
preprocessing, a critical initial step in data mining work, is
often used to improve the quality of training data set, thereby
helping to improve the accuracy and efficiency of the
subsequent mining process. To do so data cleaning and
preparation is the core task of data mining which is
dependent on chosen software and algorithms [1].

This paper presents a preprocessing technique for scaling
up the decision tree classifier accuracy. We applied naive
Bayes classifier on the training dataset to remove
troublesome instances. This method able to automatically
extract the most valuable training datasets from noisy
complex training data before constructing the learning tree
for decision making. It will also reduce the risks associated
with over-fitting. As good quality data helps the mining
purpose to get good performance, this proposed
preprocessing technique helps to get better quality training
dataset and impressive accuracy results by removing noisy

contradictory instances.

The rest of the paper is organized as follows: Section 2
introduces existing works related to decision tree. Section 3
and 4 present our proposed algorithm and the experimental
results, respectively. Finally, the conclusion is drawn in
Section 5.

2. Related Works

Decision tree is a fast and efficient algorithm of data
mining in classification and prediction. After the first
decision tree algorithm was proposed [2], numerous
algorithms have been proposed by different researchers to
improve the classification accuracy of the decision tree.
Some of the classic examples of decision tree algorithms are
ID3, CART, C4.5, C5.0, CHAID, and SPRINT. C4.5 is based
on the improvement of ID3.

In [3], the proposed decision tree algorithm is based on

sample selection to improve the classification accuracy and
to find the best training dataset. In sample selection, they
used iteration process to find the best training set. Using
accuracy of the selected sample training as iteration,
Information is highly optimized. In [4], the proposed
algorithm avoids the over-fitting and complexity problems
suffered in the construction of decision trees. This algorithm
combines the attribute selection and data sampling processes
without the pruning phase.

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 787 -

To overcome over-fitting problem, a post-pruning
decision tree algorithm was proposed based on Bayesian
theory [5]. Each branch of the decision tree generated by the
C4.5 algorithm was validated by Bayesian theorem, and then
those branches that do not meet the conditions will be
removed from the decision tree. The Bayesian theory puts a
post-pruning technique which utilizes two types of
verification strategies; i.e., necessity, and sufficiency. This
theory was applied to enhanced the accuracy of the given
decision tree [6]. Tsallis Entropy Information Metric (TEIM)
algorithm was proposed with a new split criterion and new
construction method of decision tree [7]. The new split
criterion is based on two terms of Tsallis conditional entropy,
which is better than conventional split criteria, whereas the
new construction method is based on a two-stage approach
that avoids local optimum to a certain extent. By
combining all the strengths of Tsallis entropy, outstanding
performance in accuracy and complexity was achieved by
this novel decision tree algorithm, TEIM algorithm.

3. Proposed Algorithm

In this section, we present a naive Bayes classifier and the
proposed algorithm.

3.1 Naive Bayes Classifier
A naive Bayes classifier is a simple probabilistic based

method, which can predict class membership probabilities [8].
It is easy to use and requires only one scan of the training
data for probability generation. It can also handle missing
attribute values easily by simply omitting the corresponding
probabilities for those attributes when calculating the
likelihood of membership for each class. The naive Bayes
classifier also requires class conditional independence; i.e.,
the effect of an attribute on a given class is independent of
those of other attributes.

For a given training dataset, T = {D1,D2,... Dn}, each data
record is represented as, Di = {d1,d2,... dn}. D contains the
following attributes, {A1,A2,... An} and each attribute Ai
contains the following attribute values, {Ai1,Ai2,... Aim}. The
attribute values can be discrete or continuous. T also contains
a set of classes, C = {C1,C2,... Cz}. Each training instance, D

 T, has a particular class label Ci. For a test instance, D, the
classifier will predict that D belongs to the class with the
highest posterior probability, conditioned on D. That is, the
naive Bayes classifier predicts that the instance D belongs to
the class, Ci, if and only if P(Ci|D) > P(Cj|D) for 1 j z,
j i. The class Ci for which P(Ci|D) is maximized is called the
Maximum Posterior Hypothesis and is calculated as in (1). In
Bayes theorem, as shown in (1), P(D) is a constant for all
classes and therefore, only P(D|Ci)P(Ci) needs to be
maximized.

................................(1)

where: P(C|D) - the posterior probability of class (target)
given predictor (attribute).

P(C) - the prior probability of class.

P(D|C) - the likelihood which is the probability
 of predictor given class.

P(D) - the prior probability of predictor.

3.2 Preprocessing Algorithm
We proposed a preprocessing technique to find higher

quality data to apply to the C4.5 decision tree classifier. The
proposed algorithm is based on the naive Bayes classifier in
order to remove noisy instances from the training dataset.

For the training dataset, T, we first applied a basic naive
Bayes classifier to classify each training instance, di T. We
calculated the prior probability, P(Ci), for each class, Ci T
and the class conditional probability, P(Aij|Ci), for each
attribute value in D. We did the same even if the attribute
value was numeric. Then we classified each training instance,
di T, using these probabilities. The class, Ci, with the
highest posterior probability, P(Ci|di), was selected as the
final classification for the instance, xi. Then we removed all
the misclassified training instances from the dataset T. In our
experiments, these misclassified instances tended to be the
troublesome training instances. The presence of such noisy
training instances is more likely to cause a decision tree
classifier to cause over-fitting, and thus decrease its accuracy.

After removing those misclassified instances from the
training dataset, T, we subsequently built a decision tree for
decision making using the updated, purely noise free,
training dataset T. We present the proposed algorithm as
follows:

Preprocessing Algorithm

Input: Training dataset (T) = {d1,d2, . . . ,dn}

Output: Training dataset with correctly classified instances

Method:

1: For each class, Ci T,

2: Calculate prior probabilities, P(Ci).

3: End For

4: For each attribute value, Aij T,

5: Calculate class conditional probabilities, P(Aij/Ci).

6: End For

7: For each training instance, di T,

8: Calculate posterior probability, P(Ci/di)

9: If di is misclassified,

10: Remove di from T;

11: End If

12: End For

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 788 -

4. Experiments

4.1 Data Source

In this paper, the experimental data was collected from
MDM Global (http://www.mdmglobal.co), online sports
apparel retailer in Asia. There were 49,871 sales records
collected over a period of 27 days from August 1, 2014 to
August 27, 2014, inclusive. The data represented in a
sequence of time-stamped points.

4.2 Experimental Setup

The experiments were conducted using Windows 7, 64-
bit OS, with a 2.5GHz Dual Intel Core i5 Processor and 8GB
of RAM. The experiments were performed using Weka 3.8.0,
which is an open source data mining software [9] for
building models, evaluation, and analysis of the classifier
models. Microsoft Excel was used for data preparation,
preprocessing and analysis tasks. The proposed
preprocessing algorithm was implemented in Java, using
Eclipse Java EE IDE 4.5.2 and experiment results were
plotted using SigmaPlot 10.0 [10].

To test the proposed algorithm, we used classification
accuracy as in (2) and 10-fold cross validation.

......................(2)

 where TP, TN, FP and FN denote True Positives, True
Negatives, False Positives and False Negatives, respectively.

The 10-fold cross-validation breaks data into 10 sets of
sizes N/10. It trains the classifier on 9 datasets and tests it
using the remaining one dataset. This process repeats 10
times and a mean accuracy rate is calculated.

4.3 Results and Discussion

According to the experimental results, the proposed
preprocessing technique reduced the size of the training
dataset from 49,871 to 35,782 records. The proposed
algorithm helps to increase the training dataset quality by
removing noisy instances.

We evaluated the performance of the proposed algorithm
against the existing C4.5 decision tree classifier based on
classification accuracy. Figure 1 shows the classification
accuracy for both classifiers based on training dataset. It
shows that he proposed decision tree classifier outperformed
the existing C4.5 decision tree classifier by 8.5%. Moreover,
the result in Figure 2 indicates the proposed decision tree
classifier was improved the classification accuracy rate by
14.32% using 10-fold cross validation.

(Figure 1) Classification accuracy with training dataset

(Figure 2) Classification accuracy with 10-fold cross
validation

5. Conclusion

In this paper, we have introduced a preprocessing
algorithm to improve decision tree classifier performance.
The proposed method applied the naive Bayes classifier to
remove noisy instances from the training dataset before the
decision tree induction. The Experiment evaluation results
prove that the efficiency of the proposed decision tree
algorithm outperforms the existing C4.5 decision tree
classifier. The evaluation results are summarized in Table 1.
In future work, we will test more classification performances
based on training time, precision, sensitivity, and specificity.

<Table 1> Performance Summary
 Existing C4.5

Decision Tree
Classifier

Proposed
Decision Tree

Classifier
Accuracy on Training
Dataset (%) 86.02 94.52

Accuracy on 10-fold
cross validation (%) 67.26 81.58

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 789 -

Acknowledgment

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) (NRF-2015R1A2A1A05001845).

References

[1] Galathiya, A. S., A. P. Ganatra, and C. K. Bhensdadia.
"Improved Decision Tree Induction Algorithm with
Feature Selection, Cross Validation, Model Complexity
and Reduced Error Pruning." International Journal of
Computer Science and Information Technologies 3.2
(2012): 3427-3431.

[2] Quinlan, J. Ross. "Simplifying decision
trees." International journal of man-machine studies 27.3
(1987): 221-234.

[3] Chen, Fucai, Xiaowei Li, and Lixiong Liu. "Improved C4.
5 decision tree algorithm based on sample
selection." Software Engineering and Service Science
(ICSESS), 2013 4th IEEE International Conference on.
IEEE, 2013.

[4] Karabadji, Nour El Islem, et al. "Improved decision tree
construction based on attribute selection and data
sampling for fault diagnosis in rotating
machines." Engineering Applications of Artificial
Intelligence 35 (2014): 71-83.

[5] Zhang, Wenchao, and Yafen Li. "A Post-Pruning Decision
Tree Algorithm Based on Bayesian." Computational and
Information Sciences (ICCIS), 2013 Fifth International
Conference on. IEEE, 2013.

[6] Quinlan, J. R. "Induction of Decision Trees, Centre for
Advanced Computing Sciences." New South Wales
Institute of Technology, Sydney (2007).

[7] Wang, Yisen, Chaobing Song, and Shu-Tao Xia.
"Improving decision trees by Tsallis Entropy Information
Metric method." Neural Networks (IJCNN), 2016
International Joint Conference on. IEEE, 2016.

[8] Farid, Dewan Md, Nouria Harbi, and Mohammad
Zahidur Rahman. "Combining naive bayes and decision
tree for adaptive intrusion detection." arXiv preprint
arXiv:1005.4496 (2010).

[9] Hall, Mark, et al. "The WEKA data mining software: an
update." ACM SIGKDD explorations newsletter 11.1
(2009): 10-18.

[10] SigmaPlot, 10.0, San Jose, CA: Systat, Software Inc.
https://systatsoftware.com/

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 790 -

