• Title/Summary/Keyword: classification accuracy assessment

Search Result 173, Processing Time 0.024 seconds

Research of IoT concept implemented severity classification system (IoT개념을 활용한 중증도 분류 시스템에 관한 연구)

  • Kim, Seungyong;Kim, Gyeongyong;Hwang, Incheol;Kim, Dongsik
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • The following research has focused and implemented on designing a system that classifies the severity of mass casualty situations across both normal and disaster levels. The system's algorithm has implemented requirements such as accuracy as well as user convenience. The developed e-Triage System has applied various severity classification algorithms implemented from IoT concepts. In order to overcome flaws of currently used severity classification systems, the e-Triage System used electronic elements including the NFC module. By using the mobile application's severity classification algorithm the system demonstrated quick and accurate assessment of patient. Four different LED lamps visualized the severity classification results and RTS scores were portrayed through FND(Flexible Numeric Display) after a two wave classification.

The Development and Application of Biotop Value Assessment Tool(B-VAT) Based on GIS to Measure Landscape Value of Biotop (GIS 기반 비오톱 경관가치 평가도구(B-VAT)의 개발 및 적용)

  • Cho, Hyun-Ju;Ra, Jung-Hwa;Kwon, Oh-Sung
    • Journal of Korean Society of Rural Planning
    • /
    • v.18 no.4
    • /
    • pp.13-26
    • /
    • 2012
  • The purpose of this study is to select the study area, which will be formed into Daegu Science Park as an national industrial complex, and to assess the landscape value based on biotop classification with different polygon forms, and to develop and computerize Biotop Value Assessment Tool (B-VAT) based on GIS. The result is as follows. First, according to the result of biotop classification based on an advanced analysis on preliminary data, a field study, and a literature review, total 13 biotop groups such as forrest biotop groups and total 63 biotop types were classified. Second, based on the advanced research on landscape value assessment model of biotop, we development biotop value assessment tool by using visual basic programming language on the ArcGIS. The first application result with B-VAT showed that the first grade was classified into 19 types including riverside forest(BE), the second grade 12 types including artificial plantation(ED), and the third class, the fourth grade, and the fifth grade 12 types, 2 types, and 18 types respectively. Also, according to the second evaluation result with above results, we divided a total number of 31 areas and 34 areas, which had special meaning for landscape conservation(1a, 1b) and which had meaning for landscape conservation(2a, 2b, 2c). As such, biotop type classification and an landscape value evaluation, both of which were suggested from the result of the study, will help to scientifically understand a landscape value for a target land before undertaking reckless development. And it will serve to provide important preliminary data aimed to overcome damaged landscape due to developed and to manage a landscape planning in the future. In particular, we expect that B-VAT based on GIS will help overcome the limitations of applicability for of current value evaluation models, which are based on complicated algorithms, and will be a great contribution to an increase in convenience and popularity. In addition, this will save time and improve the accuracy for hand-counting. However, this study limited to aesthetic-visual part in biotop assessment. Therefore, it is certain that in the future research comprehensive assessment should be conducted with conservation and recreation view.

Research on building AI learning data for rapid quality assessment of aggregates (골재의 신속한 품질평가를 위한 AI 학습용 데이터 구축에 관한 연구)

  • Min, Tae-Beom;Kim, In;Lee, Jae-Sam;Baek, Chul-Seoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.209-210
    • /
    • 2023
  • In this study, the accuracy of the assembly rate of fine aggregate and the cleavage rate of coarse aggregate was analyzed using the constructed learning data. As a result, it was possible to predict the distribution of assembly rate for fine aggregate through a simple sample collection image, showing an accuracy of 96%. The classification of the aggregates could be confirmed by analyzing the fracture shape of the gravel, showing an accuracy of 97%.

  • PDF

Study on Improvement of Frost Occurrence Prediction Accuracy (서리발생 예측 정확도 향상을 위한 방법 연구)

  • Kim, Yongseok;Choi, Wonjun;Shim, Kyo-moon;Hur, Jina;Kang, Mingu;Jo, Sera
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2021
  • In this study, we constructed using Random Forest(RF) by selecting the meteorological factors related to the occurrence of frost. As a result, when constructing a classification model for frost occurrence, even if the amount of data set is large, the imbalance in the data set for development of model has been analyzed to have a bad effect on the predictive power of the model. It was found that building a single integrated model by grouping meteorological factors related to frost occurrence by region is more efficient than building each model reflecting high-importance meteorological factors. Based on our results, it is expected that a high-accuracy frost occurrence prediction model will be able to be constructed as further studies meteorological factors for frost prediction.

Estimation of Leaf Wetness Duration Using An Empirical Model

  • Kim, Kwang-Soo;S.Elwynn Taylor;Mark L.Gleason;Kenneth J.Koehler
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.93-96
    • /
    • 2001
  • Estimation of leaf wetness duration (LWD) facilitates assessment of the likelihood of outbreaks of many crop diseases. Models that estimate LWD may be more convenient and grower-friendly than measuring it with wetness sensors. Empirical models utilizing statistical procedures such as CART (Classification and Regression Tree; Gleason et al., 1994) have estimated LWD with accuracy comparable to that of electronic sensors.(omitted)

  • PDF

Implementation of CNN Model for Classification of Sitting Posture Based on Multiple Pressure Distribution (다중 압력분포 기반의 착석 자세 분류를 위한 CNN 모델 구현)

  • Seo, Ji-Yun;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Musculoskeletal disease is often caused by sitting down for long period's time or by bad posture habits. In order to prevent musculoskeletal disease in daily life, it is the most important to correct the bad sitting posture to the right one through real-time monitoring. In this study, to detect the sitting information of user's without any constraints, we propose posture measurement system based on multi-channel pressure sensor and CNN model for classifying sitting posture types. The proposed CNN model can analyze 5 types of sitting postures based on sitting posture information. For the performance assessment of posture classification CNN model through field test, the accuracy, recall, precision, and F1 of the classification results were checked with 10 subjects. As the experiment results, 99.84% of accuracy, 99.6% of recall, 99.6% of precision, and 99.6% of F1 were verified.

Accuracy of Accelerometer for the Prediction of Energy Expenditure and Activity Intensity in Athletic Elementary School Children During Selected Activities (초등학교 운동선수를 대상으로 대표 신체활동의 에너지 소비량 및 활동 강도 추정을 위한 가속도계의 정확도 검증)

  • Choi, Su-Ji;An, Hae-Sun;Lee, Mo-Ran;Lee, Jung-Sook;Kim, Eun-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.22 no.5
    • /
    • pp.413-425
    • /
    • 2017
  • Objectives: Accurate assessment of energy expenditure is important for estimation of energy requirements in athletic children. The objective of this study was to evaluate the accuracy of accelerometer for prediction of selected activities' energy expenditure and intensity in athletic elementary school children. Methods: The present study involved 31 soccer players (16 males and 15 females) from an elementary school (9-12 years). During the measurements, children performed eight selected activities while simultaneously wearing the accelerometer and carrying the portable indirect calorimeter. Five equations (Freedson/Trost, Treuth, Pate, Puyau, Mattocks) were assessed for the prediction of energy expenditure from accelerometer counts, while Evenson equation was added for prediction of activity intensity, making six equations in total. The accuracy of accelerometer for energy prediction was assessed by comparing measured and predicted values, using the paired t-test. The intensity classification accuracy was evaluated with kappa statistics and ROC-Curve. Results: For activities of lying down, television viewing and reading, Freedson/Trost, Treuth were accurate in predicting energy expenditure. Regarding Pate, it was accurate for vacuuming and slow treadmill walking energy prediction. Mattocks was accurate in treadmill running activities. Concerning activity intensity classification accuracy, Pate (kappa=0.72) had the best performance across the four intensities (sedentary, light, moderate, vigorous). In case of the sedentary activities, all equations had a good prediction accuracy, while with light activities and Vigorous activities, Pate had an excellent accuracy (ROC-AUC=0.91, 0.94). For Moderate activities, all equations showed a poor performance. Conclusions: In conclusion, none of the assessed equations was accurate in predicting energy expenditure across all assessed activities in athletic children. For activity intensity classification, Pate had the best prediction accuracy.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

Bayesian Estimation based K-1 Gas-Mask Shelf Life Assessment using CSRP Test Data (CSRP 시험데이터를 사용한 베이시안 추정모델 기반 K-1 방독면 저장수명 분석)

  • Kim, Jong-Hwan;Jung, Chi-jung;Kim, Hyunjung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper presents a shelf life assessment for K-1 military gas masks in the Republic of Korea using test data of Chemical Materiels Stockpile Reliability Program(CSRP). For the shelf life assessment, over 2,500 samples between 2006 and 2015 were collected from field tests and analyzed to estimate a probability of proper and improper functionality using Bayesian estimation. For this, three stages were considered; a pre-processing, a processing and an assessment. In the pre-processing, major components which directly influence the shelf life of the mask were statistically analyzed and selected by applying principal component analysis from all test components. In the processing, with the major components chosen in the previous stage, both proper and improper probability of gas masks were computed by applying Bayesian estimation. In the assessment, the probability model of the mask shelf life was analyzed with respect to storage periods between 0 and 29 years resulting in between 66.1 % and 100 % performances in accuracy, sensitivity, positive predictive value, and negative predictive value.

Internal Control Risk Assessment System Using CRAS-CBR

  • Hwang, Sung-Sik;Taeksoo Shin;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.338-346
    • /
    • 2003
  • Information Technology (IT) and the internet have been major drivers the changes in all aspects of the business processes and activities. They have brought major changes to the financial statements audit environment as well, which in turn has required modifications in audit procedures. There exist, however, certain difficulties with current audit procedures especially for the assessment of the level of control risk. This assessment is primarily based on the auditors' professional judgment and experiences, not based on the objective hies or criteria. To overcome these difficulties, this paper proposes a prototype decision support model named CRAS-CBR using case based reasoning (CBR) to support auditors in making their professional judgment on the assessment of the level of control risk of the general accounting system in the manufacturing industry. To validate the performance, we compare our proposed model with benchmark performances in terms of classification accuracy for the level of control risk. Our experimental results showed CRAS-CBR outperforms a statistical model (MDA) and staff auditor performance in average hit ratio.

  • PDF