• Title/Summary/Keyword: classical means

Search Result 220, Processing Time 0.021 seconds

Added effect of uncertain geometrical parameter on the response variability of Mindlin plate

  • Noh, Hyuk Chun;Choi, Chang Koon
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.477-493
    • /
    • 2005
  • In case of Mindlin plate, not only the bending deformation but also the shear behavior is allowed. While the bending and shear stiffness are given in the same order in terms of elastic modulus, they are in different order in case of plate thickness. Accordingly, bending and shear contributions have to be dealt with independently if the stochastic finite element analysis is performed on the Mindlin plate taking into account of the uncertain plate thickness. In this study, a formulation is suggested to give the response variability of Mindlin plate taking into account of the uncertainties in elastic modulus as well as in the thickness of plate, a geometrical parameter, and their correlation. The cubic function of thickness and the correlation between elastic modulus and thickness are incorporated into the formulation by means of the modified auto- and cross-correlation functions, which are constructed based on the general formula for n-th joint moment of random variables. To demonstrate the adequacy of the proposed formulation, a plate with various boundary conditions is taken as an example and the results are compared with those obtained by means of classical Monte Carlo simulation.

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong Yang;Jie Liu;Jingsong Xie
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.119-133
    • /
    • 2023
  • Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

  • Xu, Ce
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1207-1220
    • /
    • 2018
  • The generalized hyperharmonic numbers $h^{(m)}_n(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h^{(m)}_n(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: $$S(k,m;p):=\sum\limits_{n=1}^{{\infty}}\frac{h^{(m)}_n(k)}{n^p}(p{\geq}m+1,\;k=1,2,3)$$ can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil [10] and $Mez{\ddot{o}}$ [19]. Some interesting new consequences and illustrative examples are considered.

A study on the role of technology on ICT(information and communication technology) network (정보통신기술 네트워크에서의 기술역할 분석)

  • Sin, Jun-Seok;Lee, Uk;Park, Yong-Tae
    • Proceedings of the Technology Innovation Conference
    • /
    • 2005.06a
    • /
    • pp.116-139
    • /
    • 2005
  • ICT(information and communication technology) has played a pivotal role in the world economy, and the out look for ICT has improved markedly. One of the noticeable characteristics in the ICT sector Is the global rationalization of its technology and service. Specialization on the specific ICT capability is a pressing problem for many countries. Along the line of classical innovation cluster and network studies, this paper suggests a way to find and analyze the role of core technologies on the ICT network First, technology network is constructed by using patent citation data from USPTO. Then, a couple of cluster is generated by K-means clustering technique. Finally, brokerage analysis is applied to manifest the role of principal technologies. The network visualization and some stylized facts on dynamics are briefly given altogether Based on the role and relationship of technologies across clusters, it is expected that this research could contribute to the ICT cluster formation and the vision-making for ICT specialization at the viewpoint of technology Policy.

  • PDF

Second Order Effect Induced by a Forced Heaving

  • Kim, Won-Joong;Kwon, Sun-Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.12-21
    • /
    • 2016
  • In this paper, the $2^{nd}$ order hydrodynamic force effect of heaving submerged circular cylinder is considered, with the linear potential theory. Boundary value problem (BVP) is expanded up to the $2^{nd}$ order by using of the perturbation method and the $2^{nd}$ order velocity potential is calculated by means of integral equation technique using the classical Green's function expressed in cylindrical coordinates. The method of solving BVP is based on eigenfunction expansions. With different cylinder heights and heaving frequencies, graphical results are presented. As a result of the study, the cause of oscillatory force pattern is analyzed with the occurrence of negative added mass when a top of the cylinder gets closer to the free surface.

Fatigue experiments on steel cold-formed panels under a dynamic load protocol

  • Garcia-Palencia, Antonio J.;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.387-402
    • /
    • 2013
  • A dynamic load protocol has been used to experimentally simulate fatigue behavior in cold-formed metal panels with screwed connections under wind loading. The specific protocol adopted is an adaptation of SIDGERS, originally developed for non-metallic membranes, which is composed of levels each under increasing load values. A total of 19 tests were performed on 3.35 m long by 0.91 m wide panels, identified as Type B-wide rib and Type E, both with screw connections at the edge and at the center, thus conforming two-span specimens. In some configurations the panels were fixed at the valleys, whereas crest-fixed connections were also investigated. Reinforcing the connections by means of washers was also investigated to evaluate their efficiency in improving fatigue capacity. The experimental results show maximum load capacities in improved connections with washers of approximately twice of those with classical connections.

Preparation of Nanocomposite by Microwave Processing (마이크로파 공정을 이용한 나노복합체의 제조)

  • Kim, Tae-Hoon;Son, Se-Mo;Park, Ji-Hwan;Seo, Geum-Suk;Park, Seong-Soo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.111-122
    • /
    • 2004
  • The purpose of this study was to investigate the possibility of application of microwave energy for the fabrication of polymer/clay nanocomposite. APES/Clay nanocomposites were prepared at $130^{\circ}C$ for 30min with various amount of MMT or OMMT used the melt-intercalation method applied the classical and microwave heating source. APES/Clay samples were characterized by the means of X-ray diffractometry (XRD), transmitted electron microscopy (TEM) differential scanning calorimetry (DSC), and rheometric dynamic analysis (RDA). It was found that intercalated or exfoliated state of the samples could be controlled by the clay type, clay content, and heating type.

  • PDF

A KOROVKIN TYPE APPROXIMATION THEOREM FOR DOUBLE SEQUENCES OF POSITIVE LINEAR OPERATORS OF TWO VARIABLES IN A-STATISTICAL SENSE

  • Demirci, Kamil;Dirik, Fadime
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.825-837
    • /
    • 2010
  • In this paper, we obtain a Korovkin type approximation theorem for double sequences of positive linear operators of two variables from $H_w$ (K) to C (K) via A-statistical convergence. Also, we construct an example such that our new approximation result works but its classical case does not work. Furthermore, we study the rates of A-statistical convergence by means of the modulus of continuity.

Fuzzy dynamic structural analysis of two-dimensional frame

  • Stemberk, Petr;Kruis, Jaroslav
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.147-160
    • /
    • 2007
  • In this paper, a dynamic analysis based on the fuzzy set theory is presented as a possible complementary tool to the classical stochastic methods for dynamic analyses. Material parameters of a structure are influenced by uncertainties and therefore they are considered to be fuzzy quantities with given distributions, that means fuzzy numbers with given membership functions. The fuzzy dynamic analysis is conducted with help of fuzzy arithmetic defined on the so-called ${\alpha}$-cuts. The results of the analysis are also obtained in the form of fuzzy numbers, which compared to the stochastic methods is less computationaly expensive while at the same time they still provide information about the distribution of a quantity. This method is demonstrated on an analysis of a two-dimensional frame subjected to possible seismic load, where the uncertain eigenmodes and eigenfrequencies are used in the modal analysis.

A Study on Nano-Accelerometer based on Carbon Nanotube (탄소나노튜브 기반의 나노-가속도계에 관한 연구)

  • Song, Young-Jin;Lee, Jun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We investigated the characteristics of a capacitive nano-accelerometer based on carbon nanotube by means of classical molecular dynamics simulations. The position of the telescoping nanotube was controlled by the externally applied force and the feedback sensing was achieved from the capacitance change. Considering energy dissipation, the oscillation features of the nano-accelerometers were similar, regardless of their initial displacements. The capacitance variations, which were almost linearly proportional to the applied acceleration, were monitored within an error tolerance.