• Title/Summary/Keyword: clap

Search Result 15, Processing Time 0.022 seconds

Numerical Flow Visualization of Cyclic Motion of a Fling-Clapping Wing (프링-크래핑 날개의 주기적 운동에 관한 수치적 흐름 가시화)

  • Chang, Jo-Won;Sohn, Myong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1511-1520
    • /
    • 2004
  • A flow visualization of the two-dimensional rigid fling-clap motions of the flat-plate wing are performed to gain knowledge of butterfly mechanisms that might be employed by butterflies during flight. In this numerical visualization, the time-dependent Navier-Stokes equations are solved for cyclic fling and clap types of wing motion. The separation vortex pair that is developed in the fling phase of the cyclic fling and clap motion is observed to be stronger than those of the fling followed by clap and pause motion(1st cycle motion). This stronger separation vortex pair in the fling phase is attributable to the separation vortex pair of the outside space developed in the clap phase as it moves into the opening in the following fling phase. Accordingly, higher lift and power expenditure coefficients in the fling after clap phase is caused by the stronger separation vortex pair.

Effects of Random Visual and Auditory Stimulation on Walking of Healthy Adults (무작위 시청각자극이 건강한 성인의 보행에 미치는 영향)

  • park, Jieun;Kim, Euna;Yang, Sungmin;Lee, Nahyun;Ha, Minhye;Cha, Yuri
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2019
  • Purpose: The purpose of this study is to investigate the effect of visual and auditory stimulation randomly applied to healthy adults on walking. Design: Randomized Controlled Trial. Methods: Twenty-six healthy students in S college were randomly divided into visual feedback group (n=13) and auditory feedback group (n=13). The visual feedback group walked using four conditions. 1) In the red screen was shown, clap twice to the right, 2) In yellow screen, clap twice to the left, 3) In green screen, clap twice over head. 4) Do not clap in purple screen. The auditory feedback group walked using four conditions. 1)in red, clap twice to the right, 2) In yellow, clap twice left, 3) In green, clap twice over your head. 4) Do not clap in purple. All subjects measured gait variables before and after the test using G-walker. Result: The visual feedback group showed a significant decrease (p<.05) in the number of steps per minute, walking speed, and step length compared with that of normal walking. The auditory feedback group showed a significant decrease (p<.05) in the number of steps per minute, walking speed, and step length than that of normal walking. Conclusion: The results of this study suggest that visual and auditory stimulation applied to healthy adults may have significant effects on walking.

Numerical Flow Visualization of 1st Cycle Motion of a Fling-clapping Wing (프링-크래핑 날개의 첫 번째 사이클 운동에 관한 수치적 흐름 가시화)

  • Sohn, Myong-Hwan;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.1-12
    • /
    • 2004
  • A flow visualization of the 1st cycle motion of a fling-clapping wing that might be employed by butterflies during flight is performed. In this numerical flow visualization, he time-dependent Navier-Stokes equations are solved for two wing motion types; 'fling followed by clap and pause' and 'clap followed by fling and pause'. The result is observed regarding the main flow features such as the sequential development of the two families of separation vortex pairs and their movement. For the fling followed by clap and pause motion, a strong separation vortex pair of counter-clockwise develops in the opening between the wings in the fling phase and they then move out from the opening in the following clap phase. For the clap followed by fling and pause motion, the separation vortex pair developed in the outside space in the clap phase move into the opening in the following fling phase. The separation vortex pair in the opening developed in the fling phase of the clap followed by fling and pause motion is observed to be stronger than that in the opening developed in the fling phase of the fling followed by clap and pause motion.

A Study on the Position of Young Casual brands to Propose Marketing Strategies of the Brands and those of the Department Stores - focused on the L-Department Store - (백화점(百貨店) 및 브랜드의 마케팅전략(戰略) 제안(提案)을 위한(爲限) 영캐주얼 브랜드의 위치(位置) 분석(分析) - L 백화점(百貨店)을 중심(中心)으로 -)

  • Yu, Ji-Hun
    • Journal of Fashion Business
    • /
    • v.8 no.4
    • /
    • pp.117-130
    • /
    • 2004
  • The purposes of this study were to find out highly market sharing young casual brands, to compare their trends of concept and competition, and to propose orientation of brand concept repositioning and marketing strategies on Department stores. Reference searching method and field searching method were used for this study. The results were as follows: 1. The brands which covered more than 50% market share included <96NY> . 2. Price range of these brands was from 130,000 to 220,000 won. The brands of upper-moderate price zone included <96NY> and they were very competitive each other. The brands of moderate price zone included and they were also very competitive between them. However, the brands of lower-moderate price zone had lower competition. This price zone might be a good point to launch new brands. 3. The main target-age of young casual zone was from 17 to 30 years. The most of brands focused on 21-25 years old, which were higher age targeted before. 4. The main concepts of these brands were 'luxury, girlish, sexy' and 'Sportism, lifestyle' were sub-concepts.

Evaluation of an insect-mimicking flapping device actuated by a piezoceramic actuator (곤충 비행원리를 모사한 압전 작동기 구동형 날갯짓 기구의)

  • 박훈철;변도영;구남서;모하메드 샤이푸딘
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • This paper presents experimental evaluation of an insect-mimicking flapping-wing device actuated by a unimorph piezoceramic actuator. Length of each rod and hinge point in the linkage/amplification system are carefully chosen such that the resulting wing motion can mimic clapping of wings in a real insect at the end of upstroke. In addition to this, a pair of corrugated wings are fabricated mimicking zig-zag cross section of a real insect wing. Thanks to the two additional implementation, the improved flapping wing device can generate a larger lift force than the previous model even though area of the new wing is about 50% less than that of the previous wing. In this work, effects of the wing clapping, the wing corrugation, and the input wave form on the lift force generation have been also experimentally investigated. Finally, the vortex generated by the flapping device has been captured by a high speed camera, showing that vortices are produced during up- and down-strokes.

How Birds and Insects Fly (곤충과 새의 비행방법)

  • Hong, Young-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.130-143
    • /
    • 2007
  • Using steady state aerodynamic theories, it has been claimed that insects and birds cannot fly. To make matters worse, insects and birds fly at low Reynolds numbers. Therefore, a recurring theme in the literature is the importance of understanding unsteady aerodynamic effect and how the vortices behave when they separate from the moving surface that created them. In flapping flight, birds and insects can modify wing beat amplitude, stroke angle, wing planform area, angle of attack, and to a lesser extent flapping frequency to optimize the generation of lift force. Some birds are thought to employ two different gaits(a vortex ring gait and a continuous vortex gait) and unsteady aerodynamic effect(Clap and fling, Delayed stall, Wake capture and Rotational Circulation) in flapping flight. Leading edge vortices may produce an increase in lift. The trailing edge vortex could be an important component in gliding flight. Tip vortices in hovering support the body weight of the hummingbirds. Thus, this study investigated how insects and birds generate lift at low Reynolds numbers. This research is written to further that as yet incomplete understanding.

Performances Comparison of Interleaved Converter for Distributed Power System (분산 전원장치를 위한 중첩형 컨버터의 성능 비교)

  • Moon, Gun-Woo;Yoon, Suk-Ho;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.37-44
    • /
    • 1998
  • This paper compared to the operation performance and efficiency of an interleaved active clap ZVS forward converter and an interleaved ZVS half-bridge converter in distributed power system. The design for the current-mode control circuit of an interleaved active clamp ZVS forward converter is presented. To simplify the gate drive circuits, N-P MOSFETs coupled active clamp method is proposed. An efficiency about 90% for the 50∼100% load range is achieved.

  • PDF

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.

Parametric Study on Wing Design of Insect-mimicking Aerial Vehicle with Biplane Configuration (겹 날개를 사용하는 곤충 모방 비행체의 날개 형상에 대한 파라메트릭 연구)

  • Park, Heetae;Kim, Dongmin;Mo, Hyemin;Kim, Lamsu;Lee, Byoungju;Kim, Inrae;Kim, Seungkeun;Ryi, Jaeha;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.712-722
    • /
    • 2018
  • This paper conducts parametric studies on flapping wing design, one of the most important design parameters of insect-mimicking aerial vehicles. Experimental study on wing shape was done through comparison and analysis of thrust, pitching moment, power consumption, and thrust-to-power ratio. A two-axis balance and hall sensor measure force and moment, and flapping frequency, respectively. Wing configuration is biplane configuration which can develop clap and fling effect. A reference wing shape is a simplified dragonfly's wing and studies on aspect ratio and wing area were implemented. As a result, thrust, pitching moment, and power consumption tend to increase as aspect ratio and area increase. Also, it is found that the flapping mechanism was not normally operated when the main wing has an aspect ratio or area more than each certain value. Finally, the wing shape is determined by comparing thrust-to-power ratio of all wings satisfying the required minimum thrust. However, the stability is not secured due to moment generated by disaccord between thrust line and center of gravity. To cope with this, aerodynamic dampers are used at the top and bottom of the fuselage; then, indoor flight test was attempted for indirect performance verification of the parametric study of the main wing.

Experimental Analysis of the Ground Take-off Flight of a Butterfly (지면이륙하는 나비의 날개짓 분석)

  • Jang, Young-Il;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.142-143
    • /
    • 2008
  • In the present work, high-speed video images of the ground take-off flight of a live butterfly were captured and their dynamic motions during the first full-stroke were analyzed. To capture the dynamic images of the take-off motion, the experimental setup consisted of a high-speed camera, a Xenon lamp as a light source and a transparent chamber of $15^W{\times}15^L{\times}17^H$ $cm^3$ in physical size. The ambient temperature and supplementary lighting devices were precisely controlled. The weight and wing span of the butterfly tested in this study was 104 mg and 63.14 mm, respectively. The ground take-off images were captured with 4000 fps with a spatial resolution of (1024${\times}$512) pixels. The period of the first full-stroke was 80.5ms and the flapping speed of downstroke was 2 times faster than that of upstroke. As a result, butterflies used the fling and near-clap motion to generate lifting force and an interesting take-off behavior of early pronation and downstroke was observed.

  • PDF