• 제목/요약/키워드: clamp-mode

검색결과 119건 처리시간 0.024초

생쥐 소장 카할세포에서 발생하는 향도잡이 기능의 올란자핀 효능에 관한 연구 (Effects of Olanzapine on the Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine)

  • 김병주
    • 생명과학회지
    • /
    • 제29권9호
    • /
    • pp.1010-1015
    • /
    • 2019
  • 카할세포는 위장관에서 향도잡이 역할을 한다. 본연구에서는 생쥐 소장 카할세포에서 발생되는 향도잡이 기능에서 올란자핀의 역할을 연구하였다. 패치클램프 방법을 사용하여 향도잡이 전압을 측정하였다. 올란자핀에 의해서 카할세포 향도잡이 전압이 탈분극 되었으며, 이 탈분극은 무스카린성 3번 수용체 억제제에 의해서 억제 되었다. 세포내 $GDP{\beta}S$을 넣어주니 올란자핀에 의해 향도잡이 전압 탈분극이 억제되었다. 또한, 세포밖 $Na^+$ 농도 감소와 비선택성 양이온 통로 억제제에 의해서 올란자핀에 의한 향도잡이 전압 탈분극이 억제 되었다. 세포내 PLC기전의 억제제인 U-73122에 의해서 올란자핀에 의한 향도잡이 전압 탈분극이 억제 되었다. 이러한 결과로 올란자핀은 무스카린성 3번 수용체를 통해서 세포내 G 단백질과 PLC기전 및 세포밖 $Na^+$이 관여함을 알 수 있었다. 따라서 올란자핀은 카할세포를 통해서 장운동성을 조절 할 수 있을 것으로 생각된다.

양 방향성과 높은 홀딩전압을 갖는 사이리스터 기반 Whole-Chip ESD 보호회로 (The Design of SCR-based Whole-Chip ESD Protection with Dual-Direction and High Holding Voltage)

  • 송보배;한정우;남종호;최용남;구용서
    • 전기전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 높은 홀딩 전압을 갖는 SCR 기반의 파워 클램프용 ESD 보호회로와 whole-chip ESD 보호를 위한 양 방향성 ESD 보호회로를 제안하였다. 측정 결과, 파워 클램프의 경우 N/P-웰과 P-drift 영역의 길이의 변화에 따른 홀딩 전압의 증가를 확인하였으며 I/O의 경우 5V의 트리거 전압과 3V의 홀딩 전압을 확인하였다. 일반적인 whole-chip ESD 보호회로와 달리, VDD-VSS 모드 뿐만 아니라 PD, ND, PS, NS의 ESD stress mode의 방전 경로를 제공하여 효과적인 보호를 제공하며 최대 HBM 8kV, MM 400V의 감내특성을 가진다. 따라서 제안된 whole-chip ESD 보호회로는 2.5V~3.3V의 공급전원을 가지는 application에 적용 가능하다.

Enhancement of ATP-induced Currents by Phospholipase D1 Overexpressed in PC12 Cells

  • Park, Jin-Bong;Kim, Young-Rae;Jeon, Byeong-Hwa;Park, Seung-Kiel;Oh, Sae-Ock;Kim, Young-Geun;Lee, Sang-Do;Kim, Kwang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권4호
    • /
    • pp.223-229
    • /
    • 2003
  • Using phospholipase D1 (PLD1)-overexpressing PC12 (PLD1-PC12) cells, the regulatory roles of PLD1 on ATP-induced currents were investigated. In control and PLD1-PC12 cells, ATP increased PLD activity in an external $Ca^{2+}$ dependent manner. PLD activity stimulated by ATP was substantially larger in PLD1-PC12 cells than in control cells. In whole-cell voltage-clamp mode, ATP induced transient inward and outward currents. The outward currents inhibited by TEA or charybdotoxin were significantly larger in PLD1-PC12 cells than in control cells. The inward currents known as $Ca^{2+}$ permeable nonselective cation currents were also larger in PLD1-PC12 cells than in control cells. However, the difference between the two groups of cells disappeared in $Ca^{2+}$-free external solution, where ATP did not activate PLD. Finally, ATP-induced $^{45}Ca$ uptakes were also larger in PLD1-PC12 cells than in control cells. These results suggest that PLD enhances ATP-induced $Ca^{2+}$ influx via $Ca^{2+}$ permeable nonselective cation channels and increases subsequent $Ca^{2+}$-activated $K^+$ currents in PC12 cells.

Nitric Oxide Synthase Mediates Carbon Monoxide-Induced Stimulation of L-type Calcium Currents in Human Jejunal Smooth Muscle Cells

  • Lim, In-Ja;Yun, Ji-Hyun;Kim, Seung-Tae;Myung, Soon-Chul;Kim, Tae-Ho;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권3호
    • /
    • pp.161-165
    • /
    • 2004
  • Exogenous carbon monoxide (0.2%) increases L-type calcium $(Ca^{2+})$ current in human jejunal circular smooth muscle cells. The stimulatory effect of carbon monoxide (CO) on L-type $Ca^{2+}$ current is inhibited by pre-application of L-NNA, a classical competitive inhibitor of nitric oxide synthase (NOS) with no significant isoform selectivity (Lim, 2003). In the present study, we investigated which isoform of NOS affected CO induced stimulation of L-type $Ca^{2+}$ current in human jejunal circular smooth muscle cells. Cells were voltage clamped by whole-cell mode patch clamp technique, and membrane currents were recorded with 10 mM barium as the charge carrier. Before the addition of CO, cells were pretreated with each inhibitor of three NOS isoforms for 15 minutes. CO-stimulating effect on L-type $Ca^{2+}$ current was partially blocked by N-(3-(Amino-methyl) benzyl) acetamidine 2HCl (1400W, an iNOS inhibitor). On the other hand, 3-bromo-7-nitroindazole (BNI, a nNOS inhibitor) or $N^5-(1-Iminoethyl)-L-ornithine$ dihydrochloride (L-NIO, an eNOS inhibitor) completely blocked the CO effect. These data suggest that low dose of exogenous CO may stimulate all NOS isoforms to increase L-type $Ca^{2+}$ channel through nitric oxide (NO) pathway in human jejunal circular smooth muscle cells.

임피던스 튜브 내에 설치된 평판의 음파투과해석 (An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube)

  • 김현실;김봉기;김상렬;이성현
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.219-226
    • /
    • 2015
  • 본 논문은 단면이 정사각형인 임피던스 튜브 내에 고정된 평판의 STL(Sound Transmission Loss)을 해석적으로 구하는 방법을 다루었다. 평판의 진동과 튜브 내의 음장의 연성거동(coupled motion)을 고려하였는데 평판의 진동과 튜브 음장을 무한 급수의 합으로 전개하였으며 평면파 가정을 이용하여 처음 몇 개의 모드만 고려하여도 충분히 정확한 결과를 얻음을 보였다. 평판은 클램프(clamp) 지지로 가정하였는데 진동 모드는 단면의 가로 및 세로방향 보(beam) 진동 모드의 곱으로 전개하였고 고유진동수는 Rayleigh-Ritz 방법을 이용하여 구하였다. 평판의 STL은 가장 낮은 고유진동수에서 골(dip)을 가지며 주파수가 이보다 작아지면 STL은 커짐을 보였다. 기존 논문의 측정 및 FEM(Finite Element Method) 해석결과와 비교한 결과 잘 일치함을 확인하였다.

Sustained $K^+$ Outward Currents are Sensitive to Intracellular Heteropodatoxin2 in CA1 Neurons of Organotypic Cultured Hippocampi of Rats

  • Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.343-348
    • /
    • 2012
  • Blocking or regulating $K^+$ channels is important for investigating neuronal functions in mammalian brains, because voltage-dependent $K^+$ channels (Kv channels) play roles to regulate membrane excitabilities for synaptic and somatic processings in neurons. Although a number of toxins and chemicals are useful to change gating properties of Kv channels, specific effects of each toxin on a particular Kv subunit have not been sufficiently demonstrated in neurons yet. In this study, we tested electro-physiologically if heteropodatoxin2 ($HpTX_2$), known as one of Kv4-specific toxins, might be effective on various $K^+$ outward currents in CA1 neurons of organotypic hippocampal slices of rats. Using a nucleated-patch technique and a pre-pulse protocol in voltage-clamp mode, total $K^+$ outward currents recorded in the soma of CA1 neurons were separated into two components, transient and sustained currents. The extracellular application of $HpTX_2$ weakly but significantly reduced transient currents. However, when $HpTX_2$ was added to internal solution, the significant reduction of amplitudes were observed in sustained currents but not in transient currents. This indicates the non-specificity of $HpTX_2$ effects on Kv4 family. Compared with the effect of cytosolic 4-AP to block transient currents, it is possible that cytosolic $HpTX_2$ is pharmacologically specific to sustained currents in CA1 neurons. These results suggest that distinctive actions of $HpTX_2$ inside and outside of neurons are very efficient to selectively reduce specific $K^+$ outward currents.

Expression of $Ca^{2+}$-activated $K^+$ Channels and Their Role in Proliferation of Rat Cardiac Fibroblasts

  • Choi, Se-Yong;Lee, Woo-Seok;Yun, Ji-Hyun;Seo, Jeong-Seok;Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권2호
    • /
    • pp.51-58
    • /
    • 2008
  • Cardiac fibroblasts constitute one of the largest cell populations in the heart, and contribute to structural, biochemical, mechanical and electrical properties of the myocardium. Nonetheless, their cardiac functions, especially electrophysiological properties, have often been disregarded in studies. $Ca^{2+}$-activated $K^+\;(K_{Ca})$ channels can control $Ca^{2+}$ influx as well as a number of $Ca^{2+}$-dependent physiological processes. We, therefore, attempted to identify and characterize $K_{Ca}$ channels in rat Cardiac fibroblasts. First, we showed that the cells cultured from the rat ventricle were cardiac fibroblasts by immunostaining for discoidin domain receptor 2 (DDR-2), a specific fibroblast marker. Secondly, we detected the expression of various $K_{Ca}$ channels by reverse transcription polymerase chain reaction (RT-PCR), and found all three family members of $K_{Ca}$ channels, including large conductance $K_{Ca}$ (BK-${\alpha}1-\;and\;-{\beta}1{\sim}4$subunits), intermediate conductance $K_{Ca}$ (IK), and small conductance $K_{Ca}$ (SK$1{\sim}4$ subunits) channels. Thirdly, we recorded BK, IK, and SK channels by whole cell mode patch clamp technique using their specific blockers. Finally, we performed cell proliferation assay to evaluate the effects of the channels on cell proliferation, and found that the inhibition of IK channel increased the cell proliferation. These results showed the existence of BK, IK, and SK channels in rat ventricular fibroblasts and involvement of IK channel in cell proliferation.

Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats

  • Kim, Min Ji;Park, Young Hong;Yang, Kui Ye;Ju, Jin Sook;Bae, Yong Chul;Han, Seong Kyu;Ahn, Dong Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.65-74
    • /
    • 2017
  • Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta ($IL-1{\beta}$) ($1ng/10{\mu}L$) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A ($GABA_A$) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the $IL-1{\beta}$-induced mechanical allodynia. In the control group, application of GABA ($100{\mu}M$) or muscimol ($3{\mu}M$) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the $IL-1{\beta}$-treated rats. These results suggest that some large myelinated $A{\beta}$ fibers gain access to the nociceptive system and elicit pain sensation via $GABA_A$ receptors under inflammatory pain conditions.

Chelidonine blocks hKv 1.5 channel current

  • Eun, Jae-Soon;Kim, Dae-Keun;Kwak, Young-Geun
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.112-112
    • /
    • 2003
  • Voltage-gated $K^{+}$ (Kv) channels represent a structurally and functionally diverse group of membrane proteins. These channels play an important role in determining the length of the cardiac action potential and are the targets for antiarrhythmic drugs. Many $K^{+}$ channel genes have been cloned from human myocardium and functionally contribute to its electrical activity. One of these channels, Kv1.5, is one of the more cardiovascular-specific $K^{+}$ channel isoforms identified to date and forms the molecular basis for an ultra-rapid delayed rectifier $K^{+}$ current found in human atrium. Thus, the blocker of hKv1.5 is expected to be an ideal antiarrhythmic drug for atrial fibrillation. Chelidonine was isolated from Chelidonium majus L. We examined the effect of chelidonine on the hKv1.5 current expressed in Ltk-cells using whole cell mode of patch clamp techniques. Chelidonine selectively inhibited the hKv1.5 current expressed in Ltk-cells in a concentration-dependent manner, whereas did not affect the HERG current expressed in HEK-293 cells. Additionally, chelidonine reduced the tail current amplitude recorded at -50 mV after 250 ms depolarizing pulses to +60 mV, and slowed the deactivation time course resulting in a 'crossover' phenomenon when the tail currents recorded under control conditions and in the presence of chelidonine were superimposed. We found that chelidonine also inhibited the $K^{+}$ current in isolated human atrial myocytes where hKv1.5 channels were predominantly expressed. Furthermore, we examined the effects of chelidonine on the action potentials in rabbit hearts using conventional microelectrode technique. Chelidonine prolonged the action potential durations (APD) of atrial, ventricular myocytes and Purkinje fibers in a dose-dependent manner. However, the effect of chelidonine on atrial APD was frequency-dependent whereas the effect of chelidonine on the APDs of ventricular myocytes and Purkinje fibers was not frequency- dependent. Also, the selective action of chelidonine on heart was more potent than dofetilide, $K^{+}$ channel blocker.

  • PDF

pH-mediated Regulation of Pacemaker Activity in Cultured Interstitial Cells of Cajal

  • Kim, Byung-Joo;Lee, Jae-Hwa;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.7-11
    • /
    • 2006
  • Interstitial cells of Cajal (ICCs) are pacemakers in gastrointestinal tracts, regulating rhythmicity by activating nonselective cation channels (NSCCs). In the present study, we investigated the general characteristics and pH-mediated regulation of pacemaker activity in cultured interstitial cells of Cajal. Under voltage clamp mode and at the holding potential of -60 mV, the I-V relationships and difference current showed that there was no reversal potential and voltage-independent inward current. Also, when the holding potentials were changed from +20 mV to -80 mV with intervals of 20 mV, there was little difference in inward current. In pacemaker activity, the resting membrane potential (RMP) was depolarized (In pH 5.5, $23{\pm}1.5$ mV depolarized) and the amplitude was decreased by a decrease of the extracellular pH. However, in case of increase of extracellular pH, the RMP was slightly hyperpolarized and the amplitude was decreased a little. The melastatin type transient receptor potential (TRPM) channel 7 has been suggested to be required for intestinal pacemaking activity. TRPM7 produced large outward currents and small inward currents by voltage ramps, ranging from +100 to -100 mV from a holding potential of -60 mV. The inward current of TRPM7 was dramatically increased by a decrease in the extracellular pH. At pH 4.0, the average inward current amplitude measured at -100 mV was increased by about 7 fold, compared with the current amplitude at pH 7.4. Changes in the outward current (measured at +100 mV) were much smaller than those of the inward current. These results indicate that the resting membrane potential of pacemaking activity might be depolarized by external acidic pH through TRPM7 that is required for intestinal pacemaking activity.