• 제목/요약/키워드: clamp circuit

검색결과 143건 처리시간 0.018초

Carbonic anhydrase influences asymmetric sodium and acetate transport across omasum of sheep

  • Rabbani, Imtiaz;Rehman, Habib;Martens, Holger;Majeed, Khalid Abdul;Yousaf, Muhammad Shahbaz;Rehman, Zia Ur
    • Animal Bioscience
    • /
    • 제34권5호
    • /
    • pp.880-885
    • /
    • 2021
  • Objective: Omasum is an important site for the absorption of short chain fatty acids. The major route for the transport of acetate is via sodium hydrogen exchanger (NHE). However, a discrepancy in the symmetry of sodium and acetate transport has been previously reported, the mechanism of which is unclear. In this study, we investigated the possible role of carbonic anhydrase (CA) for this asymmetry. Methods: Omasal tissues were isolated from healthy sheep (N = 3) and divided into four groups; pH 7.4 and 6.4 alone and in combination with Ethoxzolamide. Electrophysiological measurements were made using Ussing chamber and the electrical measurements were made using computer controlled voltage clamp apparatus. Effect(s) of CA inhibitor on acetate and sodium transport flux rate of Na22 and 14C-acetate was measured in three different flux time periods. Data were presented as mean±standard deviation and level of significance was ascertained at p≤0.05. Results: Mucosal to serosal flux of Na (JmsNa) was greater than mucosal to serosal flux of acetate (JmsAc) when the pH was decreased from 7.4 to 6.4. However, the addition of CA inhibitor almost completely abolished this discrepancy (JmsNa ≈ JmsAc). Conclusion: The results of the present study suggest that the additional protons required to drive the NHE were provided by the CA enzyme in the isolated omasal epithelium. The findings of this study also suggest that the functions of CA may be exploited for better absorption in omasum.

양 방향성과 높은 홀딩전압을 갖는 사이리스터 기반 Whole-Chip ESD 보호회로 (The Design of SCR-based Whole-Chip ESD Protection with Dual-Direction and High Holding Voltage)

  • 송보배;한정우;남종호;최용남;구용서
    • 전기전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 높은 홀딩 전압을 갖는 SCR 기반의 파워 클램프용 ESD 보호회로와 whole-chip ESD 보호를 위한 양 방향성 ESD 보호회로를 제안하였다. 측정 결과, 파워 클램프의 경우 N/P-웰과 P-drift 영역의 길이의 변화에 따른 홀딩 전압의 증가를 확인하였으며 I/O의 경우 5V의 트리거 전압과 3V의 홀딩 전압을 확인하였다. 일반적인 whole-chip ESD 보호회로와 달리, VDD-VSS 모드 뿐만 아니라 PD, ND, PS, NS의 ESD stress mode의 방전 경로를 제공하여 효과적인 보호를 제공하며 최대 HBM 8kV, MM 400V의 감내특성을 가진다. 따라서 제안된 whole-chip ESD 보호회로는 2.5V~3.3V의 공급전원을 가지는 application에 적용 가능하다.

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF