• Title/Summary/Keyword: cladding deformation

Search Result 55, Processing Time 0.023 seconds

A Study on the Stabilizing Process and Structural Characteristics of Cable-Dome Structure (케이블돔 구조물의 안정화 이행과정 및 구조적 거동특성에 관한 연구)

  • 한상을;이경수;이주선;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.260-267
    • /
    • 1999
  • In this paper, We propose the initial shape finding and dynamic analysis of cable dome structure are presented. Cable dome that is consist of three component such as cable, strut and fabric membrane have complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system, and fabric membrane element Is conceived as cladding roof material. One of the important problem of cable dome is shape finding of those subjected to cable and membrane forces, which stabilize the structures. And the other is structural response from external load effect such as snow and wind When cable dome are subjected to dynamic load such as wind load each structural component has many important problem because of their special structural characteristics. One problem is that geometrical nonlinearity should be considered in the dynamic analysis because large deformation is occurred from their flexible characteristic. The other problem is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper describe the physical structural response of cable dome structure.

  • PDF

A Study on the Structural Behavior of Cable Domes (케이블 돔의 구조적 거동 특성에 관한 연구)

  • 한상을;윤종현;이승훈;진영상;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • Cable dome that consists of three component such as cable, strut and fabric membrane has complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system and fabric membrane element is conceived as cladding roof material. One of the important problem of cable dome is to investigate the structural response from external load effect such as snow and wind. When cable dome is subjected to load each structural component has various special structural characteristics. One is that geometrical nonlinearity should be considered because large deformation is occurred from their flexible characteristic. The other is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper researches the physical structural response of cable dome structure and the structural behavior when failure occurred at a part of structure.

  • PDF

A Study on the Surface Characterization of Fe-17wt.%Cr Steel for Cast-bonding of Al and Stainless Steel (Al과 스텐레스강의 주조접합을 위한 STS430(Fe-17wt.%Cr)강의 표면처리 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.134-141
    • /
    • 2005
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Al/Fe-17wt%Cr steel(stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemically etched to have optimum pit size and density. The optimum conditions to generate best pit are as follows: Solution: 1 M $Fecl_{3}$+1 M Nacl, Addition: $CuCl_{2}+HCl$, Current density: 80 $mA/cm^{2}$, Total current: 400 $coulomb/cm^{2}$, AC frequency :60 Hz.

INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

  • Kim, Hyun-Gil;Kim, Il-Hyun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.505-512
    • /
    • 2013
  • Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test) were performed at room temperature at a strain rate of $1.7{\times}10^{-3}s^{-1}$ for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n) variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass (Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동)

  • Lim, Byung-Chul;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5743-5747
    • /
    • 2015
  • In this study, Fe-based bulk amorphous alloy powder manufactured using gas atomization fabrication was used for laser welding. the fracture behavior of welding layer were analyzed. Tensile test results show that the destruction occurred immediately after the elastic deformation, After plastic deformation of the substrate, the destruction occurred. The actual maximum tensile strength of the welding layer and the substrate are 959.9MPa and 220.4MPa. welding layer were each $485.5{\pm}21$ and $197.4{\pm}14$ to the substrate and the actual microhardness, The welding layer has very high hardness. The welding layer showed a very weak fine acicular structure. The base material was shown in the micro structure appear a coarse grain. SEM observations of the fracture after the tensile test. Fracture morphology of the base metal and the welding layer showed ductile fracture and brittle fracture, respectively.

A Study on High Temperature Creep and Stress Relaxation Properties of Zr-4 (Zr-4의 고온 크리프 및 응력이완 특성에 관한 연구)

  • Oh, Sea-Kyoo;Park, Chung-Bae;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 1992
  • Zr-4 used for a cladding and an end plug of reactor component has creep deformation under operation at high temperature. Creep is regarded as the time dependent deformation of a material under constant applied stress. Although the major source of the deformation of zirconium component in water-cooled reactors is irradiation creep, the thermal creep may give a rise to significant deformation in reactor component especially at relatively high temperatures and at various constant stresses, and therefore it must be predicted accurately. Stress relaxation is the time dependent change of stress at constant strain and it is a process related intimately to creep. In this paper, the creep behavior and stress relaxation of Zr-4 is examined at the temperature of 50$0^{\circ}C$ that is 40% of the absolute melting temperature of Zr-4 under the stress below yield stress and under the various constant strains. The results obtained are summarized as follows: 1) With an increase of stress, the steady state creep rate increases and the creep rupture time decreases. 2) The steady state creep rate $\varepsilon$(%/s) for the stress $\sigma$sub(c) (kgf/mm super(2)) of Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 are in accord with Norton's model equation($\varepsilon$=K$\sigma$ sub(c) super (n)). The constants of materials computed are as follows: K=3.9881$\times$10 super(-5), n=1.9608 3) The rupture time T sub(r) (hr) decreases linearly with the increase of stress on the log-log scaled graph. The empirical equations computed for Zr-4 are in accord with Bailey's model equation (T sub(r)=K sub(1)$\sigma$sub(c) super(m)). The constants of materials computed are as follows: K sub(1)=1.2875$\times$10 super(16), m=-3.467 4) It seems clear that the strain could be quantitatively dependent on the high temperature creep properties such as creep stress, rupture time, steady state creep rate and total creep rate. It is found that these relationships are linear on the log-log graph. 5) In stress relaxation test, as the critical constant strain that can be allowed to the specimen is larger, stress relaxation becomes more rapid, and as the constant strain is smaller, the stress relaxation becomes slower.

  • PDF

A Study on the Characteristics of Cast Bonding Aluminium Alloy and Fe-17wt%Cr Steel with Vacuum Die Casting (진공다이캐스트법에 의한 Al합금과 Fe-17wt%Cr 강의 주조접합 특성연구)

  • Kim, Yong-Hyun;Kim, Eok-Soo;Kim, Heung-Sik;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.410-418
    • /
    • 1999
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Fe-17wt%Cr steel (stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemical etched to have optimum pit size (above 0.2 mm) and pit density (above 30%). The implementation of vacuum die casting by using surface treated stainless steel (Fe-17wt%Cr Steel) produces good trial products having acceptable cast-bonding ability. The enabling conditions for cast-bonding are pouring temperature $690^{\circ}C$, filling speed 30 m/sec and casting pressure $800\;kg/cm^2$. The microscopic observation of cast-bonded Al/Fe-17wt%Cr steel does not show any evidence of intermetallic compounds. The bonding strength of trial products is $150-400\;kg/cm^2$ and this is stronger than conventionally cladded metal having $30-70\;kg/cm^2$.

  • PDF

An Investigation of Welding Variables on Resistance Upset Welding for End Capping of HWR Fuel Elements (중수로 핵연료 봉단마개의 저항업셋 용접을 위한 용접변수)

  • 이정원;박춘호;고진현;정성훈;정문규
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.60-69
    • /
    • 1989
  • The present study was aimed at investigating the effect of welding parameters such as welding current, electrode force(or squeeze force) and parts cleaning on the sound weld, and establishing the most reliable weld conditions for HWP(Heavy Water Reactor) fuel end capping with the resistance upset butt welding. Major results obtained are as follows. 1. The amount of sound weld was increased with increasing weld current(5.0-11KA) because the activated diffusion with increasing heat generation played an important role in eliminating the porosity and weld line in the weld interface. 2. It was found that weld current was not significantly influenced by the electrode force although the increase of it caused a slight increase of weld current and upset deformation. 3. Acetone rinsing before drying for the Zircaloy-4 end cap cleaning produced the reliable sound weld because it would remove the remaining solvent and surface films, and provided the uniform contact between the end cap and the tube. 4. The optimum welding conditions for fuel end capping by a resistance upset hytt welding are obtained as follows. weld current: 10-11KA, electrode force: 62-90KPa parts cleaning: vapor degreasing.rarw.water, acetone rinsing.rarw.drying.

  • PDF

Burst criterion for Indian PHWR fuel cladding under simulated loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1525-1531
    • /
    • 2019
  • The indigenous nuclear power program of India is based mainly on a series of Pressurised Heavy Water Reactors (PHWRs). A burst correlation for Indian PHWR fuel claddings has been developed and empirical burst parameters are determined. The burst correlation is developed from data available in literature for single-rod transient burst tests performed on Indian PHWR claddings in inert environment. The heating rate and internal overpressure were in the range of 7 K/s-73 K/s and 3 bar-80 bar, respectively, during the burst tests. A burst criterion for inert environment, which assumes that deformation is controlled by steady state creep, has been developed using the empirical burst parameters. The burst criterion has been validated with experimental data reported in literature and the prediction of burst parameters is in a fairly good agreement with the experimental data. The burst criterion model reveals that increasing the heating rate increases the burst temperature. However, at higher heating rates, burst strain is decreased considerably and an early rupture of the claddings without undergoing considerable ballooning is observed. It is also found that the degree of anisotropy has significant influence on the burst temperature and burst strain. With increasing degree of anisotropy, the burst temperature for claddings increases but there is a decrease in the burst strain. The effect of anisotropy in the ${\alpha}$-phase is carried over to ${\alpha}+{\beta}$-phase and its effect on the burst strain in the ${\alpha}+{\beta}$-phase too can be observed.

Effect of High Temperature Steam Oxidation on Yielding of Zircaloy-4 PWR Fuel Cladding -Expanding Copper Mandrel Test- (가압경수형 핵연료 피복관 지르칼로이-4의 항복현상에 대한 고온 수증기 산화의 영향 -구리 맨드렐 팽창시험법-)

  • Kye-Ho Nho;Sun-Pil Choi;Byong-Whi Lee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-122
    • /
    • 1989
  • With the Zircaloy-4 tube oxidized in high temperature (1323 K) steam for 5, 10, 30 and 60 minutes, the expanding copper mandrel test was carried out over a temperature range of 673-l173k at $\varepsilon\;=\;3.0\times10^5S\;^1$. The oxidation parameters $(K_i)$ in the present study were linearly proportional to square root of time $(Ki= \delta_{kit})$ and their rate constants ($\delta_{ki}$) are 0.281, 2.82, and 2.313 for weight gain and thickness of Zr02 and $\alpha$(0) layer, respectively. Activation energy for high temperature (873-1073k) plastic deformation of Zircaloy-4 increases from 251 KJ/mol to 323 KJ/mol with increase in oxidation time from 5 minutes to 60 minutes due to the high strengthened Zr02. With the oxide layer thickness [K ; expressed in "Equivalent Cladding Reacted" (ECR,%)] and the yield stress obtained from the mandrel test, an empirical relation was derived as ($\sigma/C)^n=K^mexp$ (Q/RT) with n=6.9, m=5.7, C=0.155, 0.138, 0.051, and 0.046 MPa for Q=251, 258, 316, 323 KJ/mol, respectively.

  • PDF