Browse > Article
http://dx.doi.org/10.5516/NET.07.2012.055

INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS  

Kim, Hyun-Gil (LWR Fuel Technology Division)
Kim, Il-Hyun (LWR Fuel Technology Division)
Park, Jeong-Yong (LWR Fuel Technology Division)
Koo, Yang-Hyun (LWR Fuel Technology Division)
Publication Information
Nuclear Engineering and Technology / v.45, no.4, 2013 , pp. 505-512 More about this Journal
Abstract
Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test) were performed at room temperature at a strain rate of $1.7{\times}10^{-3}s^{-1}$ for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n) variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.
Keywords
Zr; Cladding; Pilgering; Manufacturing; Work Hardening;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H.G. Kim, B.K. Choi, Y.H. Jeong, Met. Mater. Int., 15(1) (2009) 43.   DOI   ScienceOn
2 H.G. Kim, B.K. Choi, J.Y. Park, Y.H. Jeong, Corr. Sci., 51 (2009) 2400.   DOI   ScienceOn
3 J.J. Kearns, "Thermal Expansion and Prepared Orientation in Zircaloy, WAPD-TM-472", Westinghouse Electric Corp., Pittsburgh, Pa., (1965).
4 ASTM E8 - 82; Standard methods of tension testing of metallic materials
5 J.H. Hollomon, Trans, AIME 162 (1945) 268.
6 Jr. Callister, D William (2005), Fundamentals of Materials Science and Engineering (2nd ed.), United States of America: John Wiley & Sons, p. 199, ISBN 9780471470144
7 R.B. Adamson, J.L. Lewis, Abstracts, 9th International Symposium, Zirconium in the Nuclear Industry, Kobe, Japan (1991)
8 M.R. Akbarpour, A. Ekrami, Mater. Sci. Eng. 477A (2008) 306.
9 P. Antoine, S. Vandeputt, J.B. Vogt, Mater. Sci. Eng. A 433 (2006) 55   DOI   ScienceOn
10 H. Qiu, L.N. Wang, T. Hanamura, S. Torizuka, Mater. Sci. Eng. A 536 (2012) 269   DOI   ScienceOn
11 L. Guo, Z. Chen L. Gao, Mater. Sci. Eng. A 528 (2011) 8537.   DOI   ScienceOn
12 D.O. Northwood, D.T. Lim, Canadian Metallurgical Quarterly, 18 (1979) 441.   DOI   ScienceOn
13 Y.H. Jeong, S.Y. Park, M.H. Lee, B.K. Choi, J.H. Baek, J.Y. Park, J.H. Kim, H.G. Kim, J. Nucl. Sci. Technol. 43 (2006) 977.   DOI
14 L. Moulin, S. Reschke, E. Tenckhoff, Zirconium in the Nuclear Industry, ASTM STP 824 (1984) 225.
15 R.J. Comstock, G. Schoenberger, G.P. Sabol, Zirconium in the Nuclear Industry, ASTM STP 1295 (1996) 710.
16 H. Anada, B.J. Herb, K. Nomoto, S. Hagi, R.A. Graham, T. Kuroda, Zirconium in the Nuclear Industry, ASTM STP 1295 (1996) 74.
17 R.A. Holt, J. Nucl.Mater. 51 (1974) 309.   DOI   ScienceOn
18 Y.H. Jeong, H.G. Kim, T.H. Kim, J. Nucl. Mater. 317 (2003) 1.   DOI   ScienceOn
19 H.G. Kim, J.Y. Park, Y.H. Jeong, J. Nucl. Mater. 347 (2005) 140.   DOI   ScienceOn