• Title/Summary/Keyword: citrate synthase

Search Result 65, Processing Time 0.024 seconds

Nutritional Regulation of GLUT Expression, Glucose Metabolism, and Intramuscular Fat Content in Porcine Muscle

  • Katsumata, M.;Kaji, Y.;Takada, R.;Dauncey, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1297-1304
    • /
    • 2007
  • We conducted a series of investigations in order to elucidate role of nutritional status in regulating GLUT expression and energy metabolism in porcine muscle. Firstly, the role of mild undernutrition in regulating muscle GLUT gene expression and function was studied in growing pigs (3 wk of age) on a high (H) or low (L) food intake (H = 2L) at $35^{\circ}C$ or $26^{\circ}C$. Low food intake selectively upregulates GLUT1 and GLUT4 gene expression; mRNA levels were elevated in longissimus dorsi (L. dorsi) and rhomboideus muscles but not in diaphragm or cardiac muscles. Our next step was to determine whether dietary lysine, a major primary limiting amino acid in diets for pigs, affects muscle GLUT4 expression. Pigs of 6 wk of age were pair-fed a control or low lysine (LL) diet. The control diet contained optimal amounts of all essential amino acids, including 1.15% lysine. The LL diet was similar but contained only 0.70% lysine. GLUT4 mRNA expression was upregulated by the LL diet in L. dorsi and rhomboideus muscles, whereas that in cardiac muscle was unaffected. GLUT4 protein abundance was also higher in rhomboideus muscle of animals on the LL diet. We conducted another investigation in order to elucidate effects of the LL diet on post-GLUT4 glucose metabolism. Activity of hexokinase was unaffected by dietary lysine levels while that of citrate synthase was higher both in L. dorsi and rhomboideus muscles of pigs fed on the LL diet. Glucose 6-phosphate content was higher in L. dorsi msucle in the LL group. Glycogen content was higher both in L. dorsi and rhomboideus muscles in the LL group. Further, we determined the effects of dietary lysine levels on accumulation of intramuscular fat (IMF) in L. dorsi muscle of finishing pigs. A low lysine diet (lysine content was 0.40%) meeting approximately 70% of the requirement of lysine was given to finishing pigs for two months. IMF contents in L. dorsi of the pigs given the low lysine diet were twice higher than those of the pigs fed on a control diet (lysine content was 0.65%). Finally, we proved that a well known effect of breadcrumbs feeding to enhance IMF of finishing pigs could be attributed to shortage of amino acids in diets including breadcrumbs.

Effects of Rhodiola rosea (KH101) on Anti-fatigue in Forced Swimming Rats (홍경천(紅景天)추출물(KH101)이 강제유영 흰쥐의 피로회복에 미치는 영향)

  • Jung, Hyuk-Sang;Kim, Eun-Young;Shim, Eun-Sheb;Lee, Hyun-Sam;Moon, Eun-Jung;Jin, Zhen-Hua;Kim, Sun-Yeou;Sohn, Young-Joo;Sohn, Nak-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.922-938
    • /
    • 2008
  • Objectives : Rhodiola rosea has been used in herbal medicine to treat various conditions, such as antimelancholia, antifatigue, improvement of work competence and prevention of altitude sickness. In this study, we investigated effects of Rhodiola rosea extract (KH101) on fatigue in forced swimming rats. Methods : Sprague-Dawley rats were induced with fatigue by forced swimming, then rats in each group were treated with KH101. We observed changes of glucose, LDH and cortisol in serum and LDH, glycogen, hexokinase, citrate synthase MDH, SDH and CK in muscle. Results : Obtained results were as follows: 1. Continuance times of exercise significantly increased in all groups at day 1, in the 50 mg/kg concentration group at day 2, in all groups at day 3 and in the 50 mg/kg conc. group at day 4. 2. In serum, glucose significantly decreased in all concentration groups. 3. In the soleus muscle, LDH significantly decreased in the 50 mg/kg concentration group. HK significantly decreased in the 100 mg/kg conc. group. SDH significantly increased in the 100 mg/kg conc. MDH were significantly decreased in all conc. groups. 4. In the gastrocnemius muscle, HK significantly decreased in all concentration groups, while MDH significantly increased all conc. groups. Conclusions : It is concluded that the KH101 has and anti-fatigue effect in rats. Additional studies are needed to find the mechanism of the association between each single herb.

  • PDF

Effect of combined endurance and weight training on muscle morphology and oxidative enzyme activities in human skeletal muscle (복합 운동 훈련이 인간 골격근의 형태학적 변화와 유산소 대사관련 효소 활성에 미치는 영향)

  • Lee, Kil-Woo;Lee, Jong-Sam;Lee, Jang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.367-376
    • /
    • 2014
  • The purpose of this study was to investigate the effect of either endurance training only or endurance and weight training on muscle morphology and oxidative enzyme activities in human skeletal muscles. Fourteen healthy males were randomly divided into one of two experimental training groups, either swim exercise training (n=7, ST) or combined exercise training (swim and resistance exercise training; n=7, SWT). The change of muscle fiber type was not significantly different between ST and SWT following 6 weeks of exercise training. Mean cross sectional areas as well as the numbers of capillary of different types of muscle fiber were not also significantly different from baseline for both exercise training groups (p>.05) although the tendency of increase were more notable in SWT. All oxidative enzyme activities (i.e., ${\beta}$-hydroxyl acyl dehydrogenase, citrate synthase, and carnitine palmitoyl transferase) were marginally higher in SWT compared to ST even though statistical power did not reach the level of significance. Based on these results, it was concluded that performing of combined (swimming and weight) exercise training could be the better modality for improving muscle morphological changes and oxidative enzyme activities than performing of only single aerobic exercise intervention in young healthy human skeletal muscles.

The Effects of A High-Fat Diet on Pro- and Macro-Glycogen Accumulation and Mobilization During Exercise in Different Muscle Fiber Types and Tissues in Rats

  • Lee Jong-Sam;Eo Su-Ju;Cho In-Ho;Pyo Jae-Hwan;Kim Hyo-Sik;Lee Jang-Kyu;Kwon Young-Woo;Kim Chang-Keun
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2005
  • We investigated the effects of diet manipulation on pro- and macro-glycogen accumulation and mobilization during exercise in different kinds of muscle fiber and tissue. Thirty-two Sprague-Dawley rats were divided into groups representing one of two dietary conditions: high fat (HF, n=16) or standard chow (CHOW, n=16). Each dietary group was fm1her divided into control (REST, n=8) and exercise (EXE, n=8). After an eight-week dietary intervention period, the animals in EXE swam for 3 hours while the animals in REST remained at rest Skeletal muscle (soleus, red gastrocnemius and white gastrocnemius) and liver samples were then dissected out and used for analyses. 1here was no statistical difference in body weight between the animals in the HF and mow groups (p>.05). Three hours of exercise significantly increased plasma free fatty acid (FFA) concentration in the animals in the CHOW group but not in the animals in the HF group. Both citrate. synthase (CS) and $\beta$-hydroxyacyl dehydrogenase ($\beta$-HAD) activities in skeletal muscles were higher in the HF group than in the mow group. CS and $\beta$-HAD activities were also the highest in red gastrocnemius and the lowest in white gastrocnemius. At both time points (i.e., rest and immediately after exercise) intramuscular triglyceride (IMTG) and liver TG concentrations were significantly higher in the HF compared to the CHOW. IMTG and liver TG changed selectively in the CHOW. Except in white gastrocnemius muscle, there was no significant difference in total glycogen content between HF and mow at rest. Although exercise significantly lowered total glycogen content in all groups and tissues (p<.05), the degree of reduction was markedly greater in the mow than in the HF. Whereas changes in proglycogen concentration showed a trend similar to those of total glycogen, alterations in macroglycogen concentrations clearly differed from those of total glycogen. Specifically, the degree of reduction of macroglycogen following three hours of exercise was substantially greater in the CHOW than in the HF. These results suggest that metabolic alterations induced by a long-term high fat diet may be caused by macro-glycogen rather than pro-glycogen.

Effect of Tartary Buckwheat Sprout on Non-Alcoholic Fatty Liver Disease through Anti-Histone Acetyltransferase Activity (쓴메밀 새싹 추출물의 히스톤 아세틸화 효소 활성 저해에 의한 비알코올성 지방간 억제 효능)

  • Hwang, Jin-Taek;Nam, Tae Gyu;Chung, Min-Yu;Park, Jae Ho;Choi, Hyo-Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) is caused by chronic lipid accumulation due to dysregulation of lipid metabolism in the liver, and it is associated with various human diseases such as obesity, dyslipidemia, hypertension, and diabetes. Histone acetylation is a representative epigenetic mechanism regulated by histone acetyltransferases (HATs) and deacetylases. We observed that tartary buckwheat sprout (TBS) suppressed lipid accumulation in HepG2 cells through its anti-HAT activity. We showed that TBS was a novel HAT inhibitor with specificity for the major HAT enzyme p300. Importantly, TBS reduced acetylation of total and histone proteins, H3K9, H3K36, and H4K8, resulting in decreased transcriptional activities of sterol regulatory element-binding protein 1c, ATP citrate lyase, and fatty acid synthase. These results suggest that TBS inhibits the NAFLD transcription-modulating activity of lipogenesis-related genes through modification of histone acetylation.

The Effects of LR3 and SP6 Acupuncture on Renal Damage in Streptozotocin-induced Diabetic Mice (태충·삼음교의 침 자극이 Streptozotocin으로 유발된 당뇨쥐의 신장 손상에 미치는 영향)

  • Lee, Cho In;Lee, Hyun Jong;Lee, Yun Kyu;Lim, Seong Chul;Kim, Jae Soo
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.41-51
    • /
    • 2015
  • Objectives : This study was performed to investigate the effects of $LR_3$ and $SP_6$ acupuncture on renal damage in streptozotocin(STZ)-induced diabetic mice. Methods : ICR male mice were stabilized for a week and divided into four groups: a normal mice group(N), no-acupuncture diabetic mice group(Control), $LR_3$ acupuncture diabetic mice group($LR_3$), and $SP_6$ acupuncture diabetic mice group($SP_6$). Diabetes was experimentally induced by intraperitoneal injection of STZ(150 mg/kg) in citrate buffer(pH 4.5). For two weeks, $LR_3$ and $SP_6$ acupunctures were administered bilaterally at each point once a day. After two weeks, the animals' weight was measured and they underwent a laparotomy. Serum glucose and blood urea nitrogen(BUN) were measured from the blood taken from the heart. We measured glucose, reactive oxygen species(ROS), peroxynitrite($ONOO^-$) and thiobarbituric acid reactive substances(TBARS) in the kidney and compared expression levels of superoxide dismutases(SOD), glutathione peroxidase(GPx), nuclear factor-kappa B(NF-${\kappa}B$), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase(iNOS) and Interleukin-1 beta(IL-$1{\beta}$). Results : BUN significantly decreased in $LR_3$, $SP_6$ compared to the control group. $LR_3$ showed significantly decreased glucose compared to the control group. $LR_3$, $SP_6$ significantly decreased in ROS and $ONOO^-$ compared to the control group. $LR_3$ significantly decreased in TBARS compared to the control group. $SP_6$ significantly increased in expressions of SOD-1, catalase, and GPx compared to the control group. $LR_3$, $SP_6$ significantly decreased in COX-2 compared to the control group. $SP_6$ significantly decreased in IL-$1{\beta}$ compared to the control group. Conclusions : This study suggests that $LR_3$ acupuncture may be effective in controlling glucose and lipid peroxidation and that $SP_6$ acupuncture may have anti-oxidative and anti-inflammatory effects on renal damage in STZ-induced diabetic mice.

Functional Characterization of the ${\alpha}$- and ${\beta}$-Subunits of a Group II Chaperonin from Aeropyrum pernix K1

  • Lee, Jin-Woo;Kim, Se Won;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kwon, Hyun-Ju;Kim, Byung-Woo;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.818-825
    • /
    • 2013
  • We isolated and functionally characterized the ${\alpha}$- and ${\beta}$-subunits (ApCpnA and ApCpnB) of a chaperonin from Aeropyrum pernix K1. The constructed vectors pET3d-ApCpnA and pET21a-ApCpnB were transformed into E. coli Rosetta (DE3), BL21 (DE3), or CodonPlus (DE3) cells. The expression of ApCpnA (60.7 kDa) and ApCpnB (61.2 kDa) was confirmed by SDS-PAGE analysis. Recombinant ApCpnA and ApCpnB were purified by heat-shock treatment and anion-exchange chromatography. ApCpnA and ApCpnB were able to hydrolyze not only ATP, but also CTP, GTP, and UTP, albeit with different efficacies. Purified ApCpnA and ApCpnB showed the highest ATPase, CTPase, UTPase, and GTPase activities at $80^{\circ}C$. Furthermore, the addition of ApCpnA and ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively. In particular, the addition of ATP or CTP to ApCpnA and ApCpnB resulted in the most effective prevention of thermal aggregation and inactivation of CS and ADH. The ATPase activity of the two chaperonin subunits was dependent on the salt concentration. Among the ions we examined, potassium ions were the most effective at enhancing the ATP hydrolysis activity of ApCpnA and ApCpnB.

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models

  • Ho-Geun Kang;Jin-Ho Lim;Hee-Yun Kim;Hyunyong Kim;Hyung-Min Kim;Hyun-Ja Jeong
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.670-681
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.