DOI QR코드

DOI QR Code

Effects of Undaria pinnatifida and Leuconostoc mesenteroides Fermented Extracts on Adipocyte Differentiation in 3T3-L1 Cells

유산균을 활용한 미역발효추출물이 3T3-L1에서 지방세포 분화에 미치는 영향

  • Min Woo Moon (Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University) ;
  • Chae Hun Ra (Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University)
  • 문민우 (한경대학교 식품생명공학과) ;
  • 라채훈 (한경대학교 식품생명공학과)
  • Received : 2024.05.03
  • Accepted : 2024.07.08
  • Published : 2024.09.28

Abstract

This study aimed to examine the potential inhibitory effect of Undaria pinnatfida fermented by Leuconostoc mesenteroides (UFM) on preadipocyte differentiation in the 3T3-L1 cell line. Ethanol extracts from UFM were prepared and tested for cell viability, Oil Red O staining, and quantitative reverse transcription-PCR (RT-qPCR) in 3T3-L1 adipocytes. Treatment of preadipocytes with UFM at different concentrations (50, 100, and 200 ㎍/ml) found that it inhibited lipid accumulation by 66.80%, 61.59%, and 55.94%, respectively. Furthermore, RT-qPCR showed that UFM extract reduced the gene expressions of CCAAT/enhancer-binding protein α (C/EBP α), peroxisome proliferator-activated receptor γ (PPAR γ), adipocyte-specific lipid binding protein (aP2), fatty acid synthase (FAS), and ATP citrate lyase (ACL), respectively. These results suggest that UFM can be a beneficial functional ingredient to prevent obesity in the food industry.

유산균 L. mesenteroides SGL152를 이용한 미역발효 추출물로부터 3T3-L1 지방세포 분화에 미치는 영향을 살펴보기 위해 MTT assay, Oil Red O staining, RT-qPCR 실험을 진행하였다. 유산균의 미역발효 추출물(UFM)의 농도별 세포 독성 실험 결과, 200 ㎍/ml 농도 이하에서는 비세포독성으로 판단된다. 또한 3T3-L1 지방세포 분화와 동시에 추출물을 농도별로 처리하여 분화를 진행한 결과, 대조군과 비교하여 유의적으로 지방구 형성 및 지방분화를 억제하였다. 이러한 연구결과는 유산균을 이용한 해조류 발효과정 및 복합추출물에 있어서 유용한 정보를 제공할 것으로 판단된다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1F1A1074594).

References

  1. Lee H, Yang J, Karadeniz F, Oh JH, Choi MN, Jeon S, et al. 2022. Inhibitory effects of extract and solvent fractions from Rosa rugosa on 3T3-L1 adipocyte differentiation. J. Life Sci. 32: 979-988. 
  2. Hong JW, Park HY, Park JH, Kim SH, Kim HA, Kim JW. 2022. Inhibition of lipase activity and preadipocyte differentiation in 3T3-L1 cells treated with Sargassum horneri extract. Ocean Polar Res. 44: 61-67. 
  3. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. 2002. C/EBPα induces adipogenesis through PPARγ: A unified pathway. Genes Dev. 16: 22-26. 
  4. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14: 1293-1307. 
  5. Kim GH, Lee SY, Lee AR. 2019. The effect of Selaginella tamariscina on inhibition of pancreatic lipase and lipid accumulation. J. Korean Soc. Food Sci. Nutr. 32: 27-32. 
  6. Lee SG, Hahn D, Kim SR, Lee WY, Nam JO. 2020. Elephant garlic extracts inhibit adipogenesis in 3T3-L1 adipocytes. Microbiol. Biotechnol. Lett. 48: 377-382. 
  7. Kim SK, Kim NK, Yoon DH, Kim TH, Yang BK, Lee HJ. 2010. Gene expression of candidate genes involved in fat metabolism during in vitro adipogenic differentiation of bovine mesenchymal stem cell. J. Anim. Sci. Technol. 52: 265-270. 
  8. Lee HH, Kim JS, Jeong JH, Kim CS, Lee SY. 2023. Comparative analysis of antioxidant, anti aging and phenolic compounds of different solvent extracts from Saccharina japonica and Costaria costata. Korean J. Plant Res. 36: 107-121. 
  9. Shin SH, Kang SM. 2021. The antioxidation effect of brown algae extract. J. Korean Soc. Cosmetol. 27: 851-858. 
  10. Choi SW, Jung EA. 2022. In vitro probiotic evaluation and anti-adipogenic effect of lactic acid bacteria isolated from Kimchi. Curr. Top. Lact. Acid Bact. Probiotics 8: 59-65. 
  11. Hyun IK, Hong SW, Ma MJ, Chang JY, Lee SS, Yun YR. 2024. Antiobesity effect of Kimchi with starter cultures in 3T3-L1 cells. J. Microbiol. Biotechnol. 34: 123-131. 
  12. Kim NY, Kim JM, Son JY, Ra CH. 2023. Synbiotic fermentation of Undaria pinnatifida and Lactobacillus brevis to produce prebiotics and probiotics. Appl. Biochem. Biotechnol. 195: 6321-6333. 
  13. Sim EA, Oh HH, Jeong DY, Song GS, Kim YS. 2021. Fermentation characteristics and inhibitory effect of brown rice vinegar on adipocyte differentiation in 3T3-L1 cells. Food Sci. Preserv. 28: 416-425. 
  14. Gu YR, Hong JH. 2020. Antioxidant activity and anti-adipogenic effects of acai berry (Euterpe oleracea Mart.) juice and extracts. J. Korean Soc. Food Sci. Nutr. 49: 1184-1193. 
  15. Ji SB, Ra CH. 2023. Effect of solid-state fermented brown rice extracts on 3T3-L1 adipocyte differentiation. J. Microbiol. Biotechnol. 33: 926-933. 
  16. Jin Z, Ma Q, Chen X, Wang H, Zhu J, Lee YK, et al. 2022 An α type gluco-oligosaccharide from brown algae Laminaria japonica stimulated the growth of lactic acid bacteria encoding specific ABC transport system components. Food. Funct. 13: 11153-11168. 
  17. Cui Y, Miao K, Niyaphorn S, Qu X. 2020. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int. J. Mol. Sci. 21: 995. 
  18. ISO 10993-5: 2009. Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland. 
  19. Oh JH, Lee Y. 2015. Effects of water and ethanol extracts from four types of domestic seaweeds on cell differentiation in 3T3-L1 cell line. J. East Asian Soc. Diet Life 25: 990-998. 
  20. Kim H, Kang CH, Kim SK. 2012. Anti-adipogenic effect of Undaria pinnatifida extracts by ethanol in 3T3-L1 adipocytes. J. Life Sci. 22: 1052-1056. 
  21. Rodriguez-Perez C, Segura-Carretero A, del Mar Contreras M. 2019. Phenolic compounds as natural and multifunctional anti-obesity agents: a review. Crit. Rev. Food Sci. Nutr. 59: 1212-1229. 
  22. Kim KJ, Lee BY. 2012. Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Nutr. Res. 32: 439-447. 
  23. Paray BA, Rather IA, Al-Sadoon MK, Hamad ASF. 2018. Pharmaceutical significance of Leuconostoc mesenteroides KS-TN11 isolated from Nile Tilapia, Oreochromis niloticus. Saudi Pharm. J. 26: 509-514. 
  24. Cao Z, Umek RM, McKnight SL. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5: 1538-1552. 
  25. Yeh WC, Cao Z, Classon M, McKnight SL. 1995. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9: 168-181. 
  26. Wu Z, Rosen ED, Brun R. 1999. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3: 151-158. 
  27. Darlington GJ, Ross SE, MacDougald OA. 1998. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273: 30057-30060. 
  28. Tong Q, Hotamisligil GS. 2001. Molecular mechanisms of adipocyte differentiation. Rev. Endocr. Metab. Disord. 2: 349-355. 
  29. Tontonoz P, Hu E, Spiegelman BM. 1994. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79: 1147-1156. 
  30. Kim JB, Wright HM, Wright M, Spiegelman BM. 1998. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA 95: 4333-4337.