• Title/Summary/Keyword: cis element

Search Result 75, Processing Time 0.028 seconds

DNAse 1 Hypersensitive Sites of Lung Specific Transcription Factor Gene (폐특이 전사조절 유전자의 DNAse 1 Hypersensitive Sites)

  • Lee, Yong-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.879-886
    • /
    • 2000
  • Background : Thyroid Transcription Factor-1(TTF-1) acts as a tissue specific transcription factor in the regulation of lung specific gene expression and as morphogenic protein during lung organogenesis. Currently, there is very little information on the cis-acting sequences and transcription factors that direct the TTF-1 gene expression. DNAse 1 hypersensitive (DH) sites represent a marker for active or potentially active chromatin and are likely to be especially important in gene regulation, being associated with many DNA sequences that regulate gene expression. It is clear that DH regions correlate with genetic regulatory loci and binding for sequence-specific DNA-binding proteins. Methods : We have used DH site assays to identify putative distal regulatory elements in H441 lung adenocarcinoma cells, which express the TTF-1 gene and HeLa cells. Results : There are four DH sites 5' of the TTF-1 gene. These sites are located at base pair approximately +150, -450, -800, and -1500 from the start of transcription. Conclusion : These data suggest that there may be at least one intragenic site and regulatory region 5' prime to the promotor region.

  • PDF

The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions

  • Song, Chieun;Kim, Taeyoon;Chung, Woo Sik;Lim, Chae Oh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.577-586
    • /
    • 2017
  • Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the ${\beta}-glucuronidase$ reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of AtCYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABAtreated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice

  • Minh-Thu, Pham-Thi;Kim, Joung Sug;Chae, Songhwa;Jun, Kyong Mi;Lee, Gang-Seob;Kim, Dong-Eun;Cheong, Jong-Joo;Song, Sang Ik;Nahm, Baek Hie;Kim, Yeon-Ki
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.781-798
    • /
    • 2018
  • Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.

Genetic and molecular analysis of the R-mb gene from maize (옥수수 R-mb 유전자의 유전분석과 그의 구조)

  • 윤필용;유삼규;송원용;윤충효;임용표
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.161-165
    • /
    • 1997
  • The R-mb locus of maize is one of several genes that encode tissue-specific transcriptional regulator for the anthocyanin biosynthesis in plant parts and the aleurone layer in seeds. We found that the seed pigment frequencies gradually decreased at selfed progenies of the R-mb genetic stocks. In order to analyze the genomic structure of R-mb locus components, genomic Southern blot was performed by using R specific probe, pR-nj:1. Two bands were detected at the size of about 3.9 and 7.75kb. Five R-mb positive clones (mb-II, III, V,Ⅵ, and Ⅶ) were obtained by screening of maize genomic λFIXII library using R specific probe pR-nj:1. We constructed the restriction map of clone mb-II (7.75Kb positive) and mb-Ⅵ (3.9Kb positive), and have compared these with other R locus genes. From genetic and molecular analysis, it is suggested that R-mb complex consists two copy of R elements, and each element shows the paramutagenic and gene silencing effects by the fashion of cis-inactivation.

  • PDF

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression

  • Kumar, Shiv;Umair, Zobia;Kumar, Vijay;Lee, Unjoo;Choi, Sun-Cheol;Kim, Jaebong
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.403-408
    • /
    • 2019
  • Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo.

In silico genome wide identification and expression analysis of the WUSCHEL-related homeobox gene family in Medicago sativa

  • Yang, Tianhui;Gao, Ting;Wang, Chuang;Wang, Xiaochun;Chen, Caijin;Tian, Mei;Yang, Weidi
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.19.1-19.15
    • /
    • 2022
  • Alfalfa (Medicago sativa) is an important food and feed crop which rich in mineral sources. The WUSCHEL-related homeobox (WOX) gene family plays important roles in plant development and identification of putative gene families, their structure, and potential functions is a primary step for not only understanding the genetic mechanisms behind various biological process but also for genetic improvement. A variety of computational tools, including MAFFT, HMMER, hidden Markov models, Pfam, SMART, MEGA, ProtTest, BLASTn, and BRAD, among others, were used. We identified 34 MsWOX genes based on a systematic analysis of the alfalfa plant genome spread in eight chromosomes. This is an expansion of the gene family which we attribute to observed chromosomal duplications. Sequence alignment analysis revealed 61 conserved proteins containing a homeodomain. Phylogenetic study sung reveal five evolutionary clades with 15 motif distributions. Gene structure analysis reveals various exon, intron, and untranslated structures which are consistent in genes from similar clades. Functional analysis prediction of promoter regions reveals various transcription binding sites containing key growth, development, and stress-responsive transcription factor families such as MYB, ERF, AP2, and NAC which are spread across the genes. Most of the genes are predicted to be in the nucleus. Also, there are duplication events in some genes which explain the expansion of the family. The present research provides a clue on the potential roles of MsWOX family genes that will be useful for further understanding their functional roles in alfalfa plants.

Application of data fusion modeling for the prediction of auxin response elements in Zea mays for food security purposes

  • Nesrine Sghaier;Rayda Ben Ayed;Ahmed Rebai
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.45.1-45.7
    • /
    • 2022
  • Food security will be affected by climate change worldwide, particularly in the developing world, where the most important food products originate from plants. Plants are often exposed to environmental stresses that may affect their growth, development, yield, and food quality. Auxin is a hormone that plays a critical role in improving plants' tolerance of environmental conditions. Auxin controls the expression of many stress-responsive genes in plants by interacting with specific cis-regulatory elements called auxin-responsive elements (AuxREs). In this work, we performed an in silico prediction of AuxREs in promoters of five auxin-responsive genes in Zea mays. We applied a data fusion approach based on the combined use of Dempster-Shafer evidence theory and fuzzy sets. Auxin has a direct impact on cell membrane proteins. The short-term auxin response may be represented by the regulation of transmembrane gene expression. The detection of an AuxRE in the promoter of prolyl oligopeptidase (POP) in Z. mays and the 3-fold overexpression of this gene under auxin treatment for 30 min indicated the role of POP in maize auxin response. POP is regulated by auxin to perform stress adaptation. In addition, the detection of two AuxRE TGTCTC motifs in the upstream sequence of the bx1 gene suggests that bx1 can be regulated by auxin. Auxin may also be involved in the regulation of dehydration-responsive element-binding and some members of the protein kinase superfamily.

Identification of a Potexvirus in Korean Garlic Plants (한국 마늘 Potexvirus의 cDNA 유전자 분리 및 분포에 관한 연구)

  • Song, Jong-Tae;Choi, Jin-Nam;Song, Sang-Ik;Lee, Jong-Seob;Choi, Yang-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • To understand the molecular structure of Korean garlic viruses, cDNA cloning of virus genomic RNA was attempted. Virus particles were isolated from virus-infected garlic leaves and a cDNA library was constructed from garlic virus RNA. One of these clones, S81, selected by random sequencing has been identified as a member of potexvirus group other than potyvirus and carlavirus. The clone is 873 bp long contains most of the coat protein (CP) coding region and 3'-noncoding region including poly(A) tail. A putative polyadenylation signal sequence (AAUAAA) and the hexanucleotide motif (ACUUAA), a replicational cis-acting element conserved in the 3'-noncoding region of potexvirus RNAs are noticed. The clone S81 shows about 30-40% identity in both nucleotide and amino acid sequences with CPs of potexviruses. The genome size of the virus was analysed to be 7.46 knt by Northern blot analysis, which was longer than those of other potexviruses. The open reading frame encoding CP was expressed as a fusion protein (S81CP) in Escherichia coli and the recombinant protein was purified by immobilized metal binding affinity chromatography. Polyclonal antibody was raised against S81CP in rabbit to examine the occurrence of garlic potexvirus in Korean garlic plants by immunoblot analysis. Two virus protein bands of Mr 27,000 and 29,000 from garlic leaf extract of various cultivars reacted with the antibody. It was shown that Mr 27,000 band might not be a degradation product of Mr 29,000 band, suggesting that two types of potexvirus different in size of coat protein could exist in Korean garlic plants.

  • PDF

Transcriptional Activation and Repression of Cell Cycle Regulatory Molecules by Trichostatin A (Trichostatin A 처리에 의하 세포주기 조절인자들의 전사활성화 및 불활성화)

  • Baek Jong-Soo;Lee Hee-Kyung;Cho Young-Su;Kim Sung-Young;Park Kwan-Kyu;Chang Young-Chae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.994-1004
    • /
    • 2005
  • The dihydrofolate reductase (dhfr) promoter contains cis-acting element for the transcription factors Spl and E2F. Transcription of dhfr gene shows maximal activity during the Gl/S phase of cell cycle. The member of the Spl transcriptional factor family can act as both negative and positive regulators of gene expression. There was a report that Spl-Rb and E2F4-pl30 complexes cooperate to establish stable repression of dhfr gene expression in CHOC400 cells. Here, we examined the role of HDAC in dhfr, cyclin E, and cyclin A gene regulation using the histone deacetylation inhibitor, trichostatin A (TSA) in U2OS and C33A cells, a Rb-positive human osteosarcoma cell line, and a Rb-negative cervical carcinoma cell line, respectively. When the dhfr promoter constructs were applied in U2OS cells, TSA markedly stimulated over 14-fold of dhfr promoter activity through dhfr-Spl sites by the deletion of an E2F element. In contrast, the deletion of dhfr-Spl binding sites completely abolished promoter stimulation by TSA. The dhfr promoter activity including dhfr-Spl sites increased only 2-fold in C33A cells. Promoter activity containing only dhfr-E2F site did not have much effect by the treatment of TSA in both U2OS and C33A cells. On the other hand, treatment with TSA induced significantly mRNA expression of dhfr and cyclin E, whereas levels of cyclin A decreased in U2OS cells, but had no effect in C33A cells. These results indicate that TSA have contradictory effect, activation of dhfr and cyclin E genes on Gl phase, and down-regulation of cyclin A on G2 phase through transcriptional regulation in U2OS cells.