DOI QR코드

DOI QR Code

In silico genome wide identification and expression analysis of the WUSCHEL-related homeobox gene family in Medicago sativa

  • Yang, Tianhui (Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences) ;
  • Gao, Ting (Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences) ;
  • Wang, Chuang (Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences) ;
  • Wang, Xiaochun (Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences) ;
  • Chen, Caijin (Branch Institute of Guyuan, Ningxia Academy of Agriculture and Forestry Sciences) ;
  • Tian, Mei (Institute of Horticultural Science, Ningxia Academy of Agriculture and Forestry Sciences) ;
  • Yang, Weidi (Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences)
  • 투고 : 2022.02.21
  • 심사 : 2022.03.28
  • 발행 : 2022.06.30

초록

Alfalfa (Medicago sativa) is an important food and feed crop which rich in mineral sources. The WUSCHEL-related homeobox (WOX) gene family plays important roles in plant development and identification of putative gene families, their structure, and potential functions is a primary step for not only understanding the genetic mechanisms behind various biological process but also for genetic improvement. A variety of computational tools, including MAFFT, HMMER, hidden Markov models, Pfam, SMART, MEGA, ProtTest, BLASTn, and BRAD, among others, were used. We identified 34 MsWOX genes based on a systematic analysis of the alfalfa plant genome spread in eight chromosomes. This is an expansion of the gene family which we attribute to observed chromosomal duplications. Sequence alignment analysis revealed 61 conserved proteins containing a homeodomain. Phylogenetic study sung reveal five evolutionary clades with 15 motif distributions. Gene structure analysis reveals various exon, intron, and untranslated structures which are consistent in genes from similar clades. Functional analysis prediction of promoter regions reveals various transcription binding sites containing key growth, development, and stress-responsive transcription factor families such as MYB, ERF, AP2, and NAC which are spread across the genes. Most of the genes are predicted to be in the nucleus. Also, there are duplication events in some genes which explain the expansion of the family. The present research provides a clue on the potential roles of MsWOX family genes that will be useful for further understanding their functional roles in alfalfa plants.

키워드

과제정보

This study was funded by Major breeding project in Ningxia Hui Autonomous Region (2019NYYZ03) and Natural Science Foundation of Ningxia Hui Autonomous Region (2021AAC03286).

참고문헌

  1. Li A, Liu A, Du X, Chen JY, Yin M, Hu HY, et al. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Hortic Res 2020;7:194. https://doi.org/10.1038/s41438-020-00417-7
  2. Burglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma 2016;125:497-521. https://doi.org/10.1007/s00412-015-0543-8
  3. Lian G, Ding Z, Wang Q, Zhang D, Xu J. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. ScientificWorldJournal 2014;2014:534140.
  4. Wu CC, Li FW, Kramer EM. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLoS One 2019;14:e0223521. https://doi.org/10.1371/journal.pone.0223521
  5. van der Graaff E, Laux T, Rensing SA. The WUS homeobox-containing (WOX) protein family. Genome Biol 2009;10:248. https://doi.org/10.1186/gb-2009-10-12-248
  6. Zhang X, Zong J, Liu J, Yin J, Zhang D. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J Integr Plant Biol 2010;52:1016-1026. https://doi.org/10.1111/j.1744-7909.2010.00982.x
  7. Hao Q, Zhang L, Yang Y, Shan Z, Zhou XA. Genome-wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean. Plants (Basel) 2019;8:215.
  8. Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 2004;131:657-668. https://doi.org/10.1242/dev.00963
  9. Jha P, Ochatt SJ, Kumar V. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Rep 2020;39:431-444. https://doi.org/10.1007/s00299-020-02511-5
  10. Ahanger MA, Akram NA, Ashraf M, Alyemeni MN, Wijaya L, Ahmad P. Plant responses to environmental stresses-from gene to biotechnology. AoB Plants 2017;9:plx025.
  11. Wang LQ, Li Z, Wen SS, Wang JN, Zhao ST, Lu MZ. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar. J Exp Bot 2020;71:1503-1513.
  12. Minh-Thu PT, Kim JS, Chae S, Jun KM, Lee GS, Kim DE, et al. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice. Mol Cells 2018;41:781-798.
  13. Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Stirm V, et al. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A 2004;101:9873-9878. https://doi.org/10.1073/pnas.0403166101
  14. Charbonneau E, Chouinard PY, Allard G, Lapierre H, Pellerin D. Milk from forage as affected by carbohydrate source and degradability with alfalfa silage-based diets. J Dairy Sci 2006;89:283-293. https://doi.org/10.3168/jds.S0022-0302(06)72093-8
  15. Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 2020;11:2494. https://doi.org/10.1038/s41467-020-16338-x
  16. Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 2016;32:3246-3251. https://doi.org/10.1093/bioinformatics/btw412
  17. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res 2018;46: W200-W204. https://doi.org/10.1093/nar/gky448
  18. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, et al. SMART 4. 0: towards genomic data integration. Nucleic Acids Res 2004;32:D142-D144. https://doi.org/10.1093/nar/gkh088
  19. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008;9:299-306. https://doi.org/10.1093/bib/bbn017
  20. Nascimento FF, Reis MD, Yang Z. A biologist's guide to Bayesian phylogenetic analysis. Nat Ecol Evol 2017;1:1446-1454. https://doi.org/10.1038/s41559-017-0280-x
  21. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003;19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  22. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004;14:1188-1190. https://doi.org/10.1101/gr.849004
  23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. King BR, Guda C. ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes. Genome Biol 2007;8:R68. https://doi.org/10.1186/gb-2007-8-5-r68
  25. Wang MM, Liu MM, Ran F, Guo PC, Ke YZ, Wu YW, et al. Global analysis of WOX transcription factor gene family in Brassica napus reveals their stress- and hormone-responsive patterns. Int J Mol Sci 2018;19:3470. https://doi.org/10.3390/ijms19113470
  26. Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 2009;21:3493-3505. https://doi.org/10.1105/tpc.109.069997
  27. Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol Biol 2008;8:291. https://doi.org/10.1186/1471-2148-8-291
  28. Rosinski JA, Atchley WR. Molecular evolution of helix-turn-helix proteins. J Mol Evol 1999;49:301-309. https://doi.org/10.1007/PL00006552
  29. Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, et al. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J 2013;73:798-813. https://doi.org/10.1111/tpj.12085
  30. Liu W, Xu L. Recruitment of IC-WOX genes in root evolution. Trends Plant Sci 2018;23:490-496. https://doi.org/10.1016/j.tplants.2018.03.011
  31. Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 2014; 217-218:109-119. https://doi.org/10.1016/j.plantsci.2013.12.007
  32. Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 2013;19:307-321. https://doi.org/10.1007/s12298-013-0179-1
  33. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 2012;1819:86-96. https://doi.org/10.1016/j.bbagrm.2011.08.004
  34. Sankoff D, Zheng C. Whole genome duplication in plants: implications for evolutionary analysis. Methods Mol Biol 2018;1704:291-315. https://doi.org/10.1007/978-1-4939-7463-4_10
  35. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci 2010;15:573-581. https://doi.org/10.1016/j.tplants.2010.06.005
  36. Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 2009;149:981-993. https://doi.org/10.1104/pp.108.132795
  37. Riaz MW, Lu J, Shah L, Yang L, Chen C, Mei XD, et al. Expansion and molecular characterization of AP2/ERF gene family in wheat (Triticum aestivum L.). Front Genet 2021;12:632155. https://doi.org/10.3389/fgene.2021.632155
  38. Tang Y, Li H, Guan Y, Li S, Xun C, Dong Y, et al. Genome-wide identification of the physic nut WUSCHEL-related homeobox gene family and functional analysis of the abiotic stress responsive gene JcWOX5. Front Genet 2020;11:670. https://doi.org/10.3389/fgene.2020.00670
  39. Lie C, Kelsom C, Wu X. WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis. Plant J 2012;72:674-682. https://doi.org/10.1111/j.1365-313X.2012.05113.x
  40. Rebocho AB, Bliek M, Kusters E, Castel R, Procissi A, Roobeek I, et al. Role of EVERGREEN in the development of the cymose petunia inflorescence. Dev Cell 2008;15:437-447. https://doi.org/10.1016/j.devcel.2008.08.007
  41. Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, Chen J, et al. Stem cell regulation by Arabidopsis WOX genes. Mol Plant 2016;9:1028-1039. https://doi.org/10.1016/j.molp.2016.04.007