DOI QR코드

DOI QR Code

Application of data fusion modeling for the prediction of auxin response elements in Zea mays for food security purposes

  • Nesrine Sghaier (Laboratory of Advanced Technology and Intelligent Systems, National Engineering School of Sousse) ;
  • Rayda Ben Ayed (Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT)) ;
  • Ahmed Rebai (Laboratory of Molecular and Cellular Screening Processes, Sfax Biotechnology Center)
  • Received : 2022.08.30
  • Accepted : 2022.12.12
  • Published : 2022.12.31

Abstract

Food security will be affected by climate change worldwide, particularly in the developing world, where the most important food products originate from plants. Plants are often exposed to environmental stresses that may affect their growth, development, yield, and food quality. Auxin is a hormone that plays a critical role in improving plants' tolerance of environmental conditions. Auxin controls the expression of many stress-responsive genes in plants by interacting with specific cis-regulatory elements called auxin-responsive elements (AuxREs). In this work, we performed an in silico prediction of AuxREs in promoters of five auxin-responsive genes in Zea mays. We applied a data fusion approach based on the combined use of Dempster-Shafer evidence theory and fuzzy sets. Auxin has a direct impact on cell membrane proteins. The short-term auxin response may be represented by the regulation of transmembrane gene expression. The detection of an AuxRE in the promoter of prolyl oligopeptidase (POP) in Z. mays and the 3-fold overexpression of this gene under auxin treatment for 30 min indicated the role of POP in maize auxin response. POP is regulated by auxin to perform stress adaptation. In addition, the detection of two AuxRE TGTCTC motifs in the upstream sequence of the bx1 gene suggests that bx1 can be regulated by auxin. Auxin may also be involved in the regulation of dehydration-responsive element-binding and some members of the protein kinase superfamily.

Keywords

References

  1. Da Silva FM, Alves LS, Botelho Filho FB, Silva IS. Liquidity of corn futures contracts negotiated in BM&FBOVESPA. Rev Admin Negocios Amazon 2017;9:26-44.
  2. Xiong L, Ishitani M, Zhu JK. Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 1999;119:205-212. https://doi.org/10.1104/pp.119.1.205
  3. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol 1997;115:327-334. https://doi.org/10.1104/pp.115.2.327
  4. Perrot-Rechenmann C, Napier RM. Auxins. Vitam Horm 2005;72:203-233.
  5. Davies PJ. Plant Hormones: Biosynthesis, Signal Transduction, Action. Dordrecht: Springer, 2010.
  6. Bertosa B, Kojic-Prodic B, Wade RC, Tomic S. Mechanism of auxin interaction with auxin binding protein (ABP1): a molecular dynamics simulation study. Biophys J 2008;94:27-37. https://doi.org/10.1529/biophysj.107.109025
  7. Kepinski S, Leyser O. Plant development: auxin in loops. Curr Biol 2005;15:R208-R210. https://doi.org/10.1016/j.cub.2005.03.012
  8. Ding Z, Friml J. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci U S A 2010;107:12046-12051. https://doi.org/10.1073/pnas.1000672107
  9. Leyser O. The fall and rise of apical dominance. Curr Opin Genet Dev 2005;15:468-471. https://doi.org/10.1016/j.gde.2005.06.010
  10. Bennett T, Scheres B. Root development-two meristems for the price of one? Curr Top Dev Biol 2010;91:67-102. https://doi.org/10.1016/S0070-2153(10)91003-X
  11. Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol 2007;10:453-460. https://doi.org/10.1016/j.pbi.2007.08.014
  12. Mockaitis K, Estelle M. Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 2008;24:55-80. https://doi.org/10.1146/annurev.cellbio.23.090506.123214
  13. Su YH, Liu YB, Bai B, Zhang XS. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 2014;5:792.
  14. Raven PH, Evert RF, Eichhorn SE. Biology of Plants. London: Macmillan Publishers Ltd., 2005.
  15. Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W. DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 2009;136:1643-1651. https://doi.org/10.1242/dev.032177
  16. Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 2002;49:373-385. https://doi.org/10.1023/A:1015207114117
  17. Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ. Composite structure of auxin response elements. Plant Cell 1995;7:1611-1623.
  18. Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 2009;43:265-285. https://doi.org/10.1146/annurev-genet-102108-134148
  19. Boer DR, Freire-Rios A, van den Berg WA, Saaki T, Manfield IW, Kepinski S, et al. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 2014;156:577-589. https://doi.org/10.1016/j.cell.2013.12.027
  20. Galli M, Khakhar A, Lu Z, Chen Z, Sen S, Joshi T, et al. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat Commun 2018;9:4526.
  21. Sghaier N, Ben Ayed R, Ben Marzoug R, Rebai A. Dempster-Shafer theory for the prediction of auxin-response elements (AuxREs) in plant genomes. Biomed Res Int 2018;2018:3837060.
  22. Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, et al. The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J 2002;32:1011-1022. https://doi.org/10.1046/j.1365-313X.2002.01488.x
  23. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res 2018;46:D754-D761. https://doi.org/10.1093/nar/gkx1098
  24. Nguyen NT, Contreras-Moreira B, Castro-Mondragon JA, Santana-Garcia W, Ossio R, Robles-Espinoza CD, et al. RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Res 2018;46:W209-W214. https://doi.org/10.1093/nar/gky317
  25. van Helden J, Andre B, Collado-Vides J. A web site for the computational analysis of yeast regulatory sequences. Yeast 2000;16:177-187. https://doi.org/10.1002/(SICI)1097-0061(20000130)16:2<177::AID-YEA516>3.0.CO;2-9
  26. Sghaier N, Essemine J, Ayed RB, Gorai M, Ben Marzoug R, Rebai A, et al. An evidence theory and fuzzy logic combined approach for the prediction of potential ARF-regulated genes in Quinoa. Plants 2023;12:71.
  27. Vanhoof G, Goossens F, Hendriks L, De Meester I, Hendriks D, Vriend G, et al. Cloning and sequence analysis of the gene encoding human lymphocyte prolyl endopeptidase. Gene 1994;149:363-366. https://doi.org/10.1016/0378-1119(94)90177-5
  28. Ishino T, Ohtsuki S, Homma K, Natori S. cDNA cloning of mouse prolyl endopeptidase and its involvement in DNA synthesis by Swiss 3T3 cells. J Biochem 1998;123:540-545. https://doi.org/10.1093/oxfordjournals.jbchem.a021970
  29. Rennex D, Hemmings BA, Hofsteenge J, Stone SR. cDNA cloning of porcine brain prolyl endopeptidase and identification of the active-site seryl residue. Biochemistry 1991;30:2195-2203. https://doi.org/10.1021/bi00222a025
  30. Tsuji A, Fujisawa Y, Mino T, Yuasa K. Identification of a plant aminopeptidase with preference for aromatic amino acid residues as a novel member of the prolyl oligopeptidase family of serine proteases. J Biochem 2011;150:525-534. https://doi.org/10.1093/jb/mvr092
  31. Rea D, Fulop V. Structure-function properties of prolyl oligopeptidase family enzymes. Cell Biochem Biophys 2006;44:349-365. https://doi.org/10.1385/CBB:44:3:349
  32. Tan CM, Chen RJ, Zhang JH, Gao XL, Li LH, Wang PR, et al. OsPOP5, a prolyl oligopeptidase family gene from rice confers abiotic stress tolerance in Escherichia coli. Int J Mol Sci 2013;14:20204-20219. https://doi.org/10.3390/ijms141020204
  33. Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, et al. Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A 2009;106:17431-17436. https://doi.org/10.1073/pnas.0906696106
  34. Singh R, Irikura B, Nagai C, Albert HH, Kumagai M, Paull RE, et al. Characterization of prolyl oligopeptidase genes differentially expressed between two cultivars of Coffea arabica L. Trop Plant Biol 2011;4:203-216.
  35. Feng M, Kim JY. Revisiting apoplastic auxin signaling mediated by AUXIN BINDING PROTEIN 1. Mol Cells 2015;38:829-835. https://doi.org/10.14348/molcells.2015.0205
  36. Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, et al. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A 2001;98:4788-4793. https://doi.org/10.1073/pnas.081557298
  37. Effmert U, Saschenbrecker S, Ross J, Negre F, Fraser CM, Noel JP, et al. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Phytochemistry 2005;66:1211-1230. https://doi.org/10.1016/j.phytochem.2005.03.031
  38. Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 2003;15:1704-1716. https://doi.org/10.1105/tpc.014548
  39. Weigel D. The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 1995;7:388-389.
  40. Magnani E, Sjolander K, Hake S. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 2004;16:2265-2277. https://doi.org/10.1105/tpc.104.023135
  41. Agarwal PK, Gupta K, Lopato S, Agarwal P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 2017;68:2135-2148. https://doi.org/10.1093/jxb/erx118
  42. Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 2010;54:201-212.
  43. Luo J, Zhou JJ, Zhang JZ. Aux/IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 2018;19:259.
  44. Cheng MC, Liao PM, Kuo WW, Lin TP. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 2013;162:1566-1582. https://doi.org/10.1104/pp.113.221911
  45. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 2012;1819:86-96.
  46. Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 2001;128:4057-4067. https://doi.org/10.1242/dev.128.20.4057
  47. McMullen MD. Genomic organization of disease and insect resistance genes in maize. Mol Plant-Microbe Interact 1995;8:811-815. https://doi.org/10.1094/MPMI-8-0811
  48. Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, et al. Analysis of a chemical plant defense mechanism in grasses. Science 1997;277:696-699. https://doi.org/10.1126/science.277.5326.696
  49. Chomet PS, Frey M, Gierl A. Maize DIMBOA biosynthesis genes. United States Patent US 6,331,660. 2001 Dec 18.
  50. Butron A, Chen YC, Rottinghaus GE, McMullen MD. Genetic variation at bx1 controls DIMBOA content in maize. Theor Appl Genet 2010;120:721-734.
  51. Mikic S, Kondic-Spika A, Brbaklic L, Trkulja D, Ceran M, Stanisavljevic D, et al. Variability of bx1 gene for DIMBOA biosynthesis in maize inbred lines. Plant Breed Seed Prod 2016;22:11-18.
  52. Meihls LN, Kaur H, Jander G. Natural variation in maize defense against insect herbivores. Cold Spring Harb Symp Quant Biol 2012;77:269-283. https://doi.org/10.1101/sqb.2012.77.014662
  53. Kriechbaumer V, Weigang L, Fiesselmann A, Letzel T, Frey M, Gierl A, et al. Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biol 2008;8:44.
  54. Niculaes C, Abramov A, Hannemann L, Frey M. Plant protection by benzoxazinoids: recent insights into biosynthesis and function. Agronomy 2018;8:143.