• Title/Summary/Keyword: circular sampling

Search Result 45, Processing Time 0.026 seconds

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2003
  • This paper presents considerations on the results of the rotating arm test, which was carried out for assessment of an hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit(IMU), an ultra-short baseline(USBL) acoustic navigation sensor and a doppler velocity log(DVL) accompanying a magnetic compass. A navigational systemmodel is derived to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters are 25 in the order. The extended Kalman filter was used to propagate the error covariance, The rotating arm tests were carried out in the Ocean Engineering Basin of KRISO, to generate circular motion. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

Reliability Analysis of Seismically Induced Slope Deformations (신뢰성 기법을 이용한 지진으로 인한 사면 변위해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • The paper presents a reliability-based method that can capture the impact of uncertainty of seismic loadings. The proposed method incorporates probabilistic concepts into the classical limit equilibrium and the Newmark-type deformation techniques. The risk of damage is then computed by Monte Carlo simulation. Random process and RMS hazard method are introduced to produce seismic motions and also to use them in the seismic slope analyses. The geotechnical variability and sampling errors are also considered. The results of reliability analyses indicate that in a highly seismically active region, characterization of earthquake hazard is the more critical factor, and characterization of soil properties has a relatively small effect on the computed risk of slope failure and excessive slope deformations. The results can be applicable to both circular and non-circular slip surface failure modes.

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

An Enhanced Scheme with CFO and SFO in OFDMA system (OFDMA 시스템에서 SFO와 CFO 저감 기법에 관한 연구)

  • Lee, Young-Gwang;Lee, Kyu-Seop;Choi, Gin-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Recently, orthogonal frequency-division multiplexing(OFDM), with clusters of subcarriers allocated to different subscribers(often referred to as OFDMA), has gained much attention for its ability in enabling multiple-access wireless multimedia communications. In such systems, carrier frequency offsets (CFOs) can destroy the orthogonality among subcarriers. And the mismatch in sampling frequencies between transmitter and receiver can lead to serious degradation due to the loss of orthogonality between the subcarriers. As a result, multiuser interference (MUI) along with significant performance degradation can be induced. In this paper, we present a scheme to compensate for the SFOs and CFOs at the base station of an OFDMA system. A novel sampling frequency offset estimation algorithm is proposed, which is based on the repetition of a symbol at the communication start-up. Then, circular convolutions are employed to generate the interference after the discrete Fourier transform processing, which is then removed from the original received signal to increase the signal to interference power ratio(SIR). Simulation result shows that the proposed scheme can improve system performance.

Assessment of Coarse Woody Debris in Gallery Forest in the Bombo-Lumene Reserve (Democratic Republic of Congo)

  • Rusaati, Butoto Imani wa;Joo, Sung-Hyun;Yun, Gi-Yun;Park, Joowon;Cephas, Masumbuko Ndabaga;Kang, Jun-Won
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.205-211
    • /
    • 2019
  • The objective of this research was to assess the amount of carbon stock of coarse woody debris (CWD) in Bombo-Lumene Reserve. Data on lying CWD was collected on 35 circular sampling plots using Line Intersect Sampling (LIS) method. A total of 230 samples CWD (${\geq}10cm$ diameter) were inventoried. The mean carbon stocks of CWD was $29.48Mg\;C\;ha^{-1}$, ranging from 4.32 to $73.54Mg\;C\;ha^{-1}$. The CWD carbon stocks displayed a wide range of variation in decay states. The allocation of CWD among the decay class of all the CWD samples reveals that the most important classes were class 1 and class 3 with 323.66 and $321.96Mg\;C\;ha^{-1}$, followed by class 4 with 264.56 and the last one was class 2 with $121.72Mg\;C\;ha^{-1}$. The results suggested that the dead wood component is important in carbon sequestration and should be taken into consideration for quantification of carbon stocks not only in Bombo-Lumene Reserve, but in all forest ecosystems in the Democratic Republic of Congo.

Efficient Hausdorff Distance Computation for Planar Curves (평면곡선에 대한 Hausdorff 거리 계산의 가속화 기법에 대한 연구)

  • Kim, Yong-Joon;Oh, Young-Taek;Kim, Myung-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.115-123
    • /
    • 2010
  • We present an efficient algorithm for computing the Hausdorff distance between two planar curves. The algorithm is based on an efficient trimming technique that eliminates the curve domains that make no contribution to the final Hausdorff distance. The input curves are first approximated with biarcs within a given error bound in a pre-processing step. Using the biarc approximation, the distance map of an input curve is then approximated and stored into the graphics hardware depth-buffer by rendering the distance maps (represented as circular cones) of the biarcs. We repeat the same procedure for the other input curve. By sampling points on each input curve and reading the distance from the other curve (stored in the hardware depth-buffer), we can easily estimate a lower bound of the Hausdorff distance. Based on the lower bound, the algorithm eliminates redundant curve segments where the exact Hausdorff distance can never be obtained. Finally, we employ a multivariate equation solver to compute the Hausdorff distance efficiently using the remaining curve segments only.

Stochastic Finite Element Analysis for Rock Caverns Considering the Effect of Discontinuities (불연속면의 영향을 고려한 암반동굴의 확률유한요소해석)

  • 최규섭;황신일;이경진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.95-102
    • /
    • 1996
  • In this study, a stochastic finite element model is proposed with a view to consider the uncertainty of physical properties of discontinuous rock mass in the analysis of structural behavior on underground caverns. In so doing, the LHS(Latin Hypercube sampling) technique has been applied to make up weak points of the Crude Monte Carlo technique. Concerning the effect of discontinuities, a joint finite element model is used that is known to be superior in explaining faults, cleavage, things of that nature. To reflect the uncertainty of material properties, the variables such as the the elastic modulus, the poisson's ratio, the joint shear stiffness, and the joint normal stiffness have been used, all of which can be applicable through normal distribution, log-normal distribution, and rectangulary uniform distribution. The validity of the newly developed computer program has been confirmed in terms of verification examples. And, the applicability of the program has been tested in terms of the analysis of the circular cavern in discontinuous rock mass.

  • PDF

Estimation and Measurement of Forward Propagated Ultrasonic Fields in Layered Fluid Media

  • Ha, Kang-Lyeol;Kim, Moo-Joon;Hyun, Byung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.14-19
    • /
    • 2000
  • The forward propagated ultrasonic fields resulting from a circular plane or a concave transducer in layered fluid media as well as in homogeneous water are theoretically estimated by the angular spectrum method(ASMJ) combined with Rayleigh-Sommerfeld diffraction theory(RSDT), and measured by a precision 3-D scanning system with a needle-point hydrophone. To make the aliasing error negligible on the 2-D FFT in the theoretical estimation, the spatial discretization in the ASM are carefully considered for optimal selection of spatial sampling intervals and the size of discretization area. It is shown that the estimated fields agree reasonably with the measured ones.

  • PDF

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • Lee, Chong-Moo;Lee, Pan-Mook;Kim, Sea-Moon;Hong, Seok-Won;Seo, Jae-Won;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents a rotating ann test for assessment of an underwater hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. The rotating ann tests are conducted in the Ocean Engineering Basin of KRISO, KORDI to generate circular motion in laboratory, where the USBL system was absent in the basin. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

  • PDF

Dynamically Collimated CT Scan and Image Reconstruction of Convex Region-of-Interest (동적 시준을 이용한 CT 촬영과 볼록한 관심영역의 영상재구성)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.151-159
    • /
    • 2014
  • Computed tomography (CT) is one of the most widely used medical imaging modality. However, substantial x-ray dose exposed to the human subject during the CT scan is a great concern. Region-of-interest (ROI) CT is considered to be a possible solution for its potential to reduce the x-ray dose to the human subject. In most of ROI-CT scans, the ROI is set to a circular shape whose diameter is often considerably smaller than the full field-of-view (FOV). However, an arbitrarily shaped ROI is very desirable to reduce the x-ray dose more than the circularly shaped ROI can do. We propose a new method to make a non-circular convex-shaped ROI along with the image reconstruction method. To make a ROI with an arbitrary convex shape, dynamic collimations are necessary to minimize the x-ray dose at each angle of view. In addition to the dynamic collimation, we get the ROI projection data with slightly lower sampling rate in the view direction to further reduce the x-ray dose. We reconstruct images from the ROI projection data in the compressed sensing (CS) framework assisted by the exterior projection data acquired from the pilot scan to set the ROI. To validate the proposed method, we used the experimental micro-CT projection data after truncating them to simulate the dynamic collimation. The reconstructed ROI images showed little errors as compared to the images reconstructed from the full-FOV scan data as well as little artifacts inside the ROI. We expect the proposed method can significantly reduce the x-ray dose in CT scans if the dynamic collimation is realized in real CT machines.